
Neural Network Architecture Beyond Width and
Depth

Zuowei Shen
Department of Mathematics

National University of Singapore
matzuows@nus.edu.sg

Haizhao Yang
Department of Mathematics

University of Maryland, College Park
hzyang@umd.edu

Shijun Zhang∗
Department of Mathematics

National University of Singapore
zhangshijun@u.nus.edu

Abstract

This paper proposes a new neural network architecture by introducing an additional
dimension called height beyond width and depth. Neural network architectures
with height, width, and depth as hyper-parameters are called three-dimensional
architectures. It is shown that neural networks with three-dimensional architectures
are significantly more expressive than the ones with two-dimensional architectures
(those with only width and depth as hyper-parameters), e.g., standard fully con-
nected networks. The new network architecture is constructed recursively via a
nested structure, and hence we call a network with the new architecture nested net-
work (NestNet). A NestNet of height s is built with each hidden neuron activated
by a NestNet of height ≤ s−1. When s = 1, a NestNet degenerates to a standard net-
work with a two-dimensional architecture. It is proved by construction that height-s
ReLU NestNets with O(n) parameters can approximate 1-Lipschitz continuous
functions on [0,1]d with an error O(n−(s+1)/d), while the optimal approximation
error of standard ReLU networks with O(n) parameters is O(n−2/d). Further-
more, such a result is extended to generic continuous functions on [0,1]d with
the approximation error characterized by the modulus of continuity. Finally, we
use numerical experimentation to show the advantages of the super-approximation
power of ReLU NestNets.

1 Introduction

In this paper, we design a new neural network architecture by introducing one more dimension, called
height, in addition to width and depth in the characterization of dimensions of neural networks. We
call neural network architectures with height, width, and depth as hyper-parameters three-dimensional
architectures. It is proved by construction that neural networks with three-dimensional architectures
improve the approximation power significantly, compared to standard networks with two-dimensional
architectures (those with only width and depth as hyper-parameters). The approximation power of
standard neural networks has been widely studied in recent years. The optimality of the approximation
of standard fully-connected rectified linear unit (ReLU) networks (e.g., see [35, 40, 49, 52]) implies
limited room for further improvements. This motivates us to design a new neural network architecture
by introducing an additional dimension of height beyond width and depth.

∗Corresponding author.

We will focus on the ReLU (max{0, x}) activation function and use it to demonstrate our ideas. Our
new network architecture is constructed recursively via a nested structure, and hence we call a neural
network with the new architecture nested network (NestNet). A NestNet of height s is built with each
hidden neuron activated by a NestNet of height ≤ s − 1. In the case of s = 1, a NestNet degenerates
to a standard network with a two-dimensional architecture. Let us use a simple example to explain
the height of a NestNet. We say a network is activated by ϱ1,⋯, ϱr if each hidden neuron of this
network is activated by one of ϱ1,⋯, ϱr. Here, ϱ1,⋯, ϱr are trainable functions mapping R to R.
Then, a network of height s ≥ 2 can be regarded as a (ϱ1,⋯, ϱr)-activated network, where ϱ1,⋯, ϱr
are (realized by) networks of height ≤ s − 1. See an example of a height-2 network in Figure 1. The
network therein can be regarded as a (ϱ1, ϱ2)-activated network, where ϱ1 and ϱ2 are (realized by)
networks of height 1 (i.e., standard networks). The number of parameters in the network of Figure 1
is the sum of the numbers of parameters in L0,L1,L2 and ϱ1, ϱ2.

x1

x2
ϕ(x1, x2)L0 L1 L2

ϱ2

ϱ2

ϱ2

ϱ1

ϱ1

ϱ1

ϱ1

ϱ1

ϱ2

1-st hidden layer 2-nd hidden layer output layer

Figure 1: An example of a network of height 2, where ϱ1 and ϱ2 are (realized by) networks of height
1 (i.e., standard networks). Here, L0, L1 and L2 are affine linear maps.

We remark that a NestNet can be regarded as a sufficiently large standard network by expanding all
of its sub-network activation functions. We propose the nested network architecture since it shares
the parameters via repetitions of sub-network activation functions. In other words, a NestNet can
provide a special parameter-sharing scheme. This is the key reason why the NestNet has much better
approximation power than the standard network. If we regard the network in Figure 1 as a NestNet of
height 2, then the number of parameters is the sum of the numbers of parameters in L0,L1,L2 and
ϱ1, ϱ2. However, if we expand the network in Figure 1 to a large standard network, then the number
of parameters in ϱ1 and ϱ2 will be added many times for computing the total number of parameters.

Next, let us discuss our new network architecture from the perspective of hyper-parameters. We call
the network architecture with only width as a hyper-parameter one-dimensional architecture. Its
depth and height are both equal to one. Neural networks with this type of architecture are generally
called shallow networks. See an example in Figure 2(a). We call the network architecture with
only width and depth as hyper-parameters two-dimensional architecture. Its height is equal to one.
Neural networks with this type of architecture are generally called deep networks. See an example
in Figure 2(b). We call the network architecture with height, width, and depth as hyper-parameters
three-dimensional architecture, which is proposed in this paper. Neural networks with this type of
architecture are called NestNets. See an example in Figure 2(c). One may refer to Table 1 for the
approximation power of networks with these three types of architectures discussed above.

Table 1: Comparison for the approximation error of 1-Lipschitz continuous functions on [0,1]d
approximated by ReLU NestNets and standard ReLU networks.

dimension(s) #parameters approximation error remark reference

one-hidden-layer network width varies (depth = height = 1) O(n) n−1 for d = 1 linear combination

deep network width and depth vary (height = 1) O(n) n−2/d composition [35, 40, 49, 52]

NestNet of height s width, depth, and height vary O(n) n−(s+1)/d nested composition this paper

Our main contributions are summarized as follows. We first propose a three-dimensional neural
network architecture by introducing one more dimension called height beyond width and depth. We
show that neural networks with three-dimensional architectures are significantly more expressive
than standard networks. In particular, we prove that height-s ReLU NestNets with O(n) parameters
can approximate 1-Lipschitz continuous functions on [0,1]d with an error O(n−(s+1)/d), which is
much better than the optimal error O(n−2/d) of standard ReLU networks with O(n) parameters. In

2

(a) (b)

(c) (d)

Figure 2: Illustrations of neural networks with one-, two-, and three-dimensional architectures. (a)
One-dimensional case (width = 3, depth = height = 1). (b) Two-dimensional case (width = depth = 3,
height = 1). (c) Three-dimensional case (width = depth = height = 3). (d) Zoom-in of an activation
function of the network in (c). The network in (d) can also be regarded as a network of height 2.

the case of s + 1 ≥ d, the approximation error is bounded by O(n−(s+1)/d) ≤ O(n−1), which means
we overcome the curse of dimensionality. Furthermore, we extend our result to generic continuous
functions with the approximation error characterized by the modulus of continuity. See Theorem 2.1
and Corollary 2.2 for more details. Finally, we conduct simple experiments to show the numerical
advantages of the super-approximation power of ReLU NestNets.

The rest of this paper is organized as follows. In Section 2, we present the main results, provide the
ideas of proving them, and discuss related work. The detailed proofs of the main results are placed
in the appendix. Next, we conduct experiments to show the advantages of the super-approximation
power of ReLU NestNets in Section 3. Finally, Section 4 concludes this paper with a short discussion.

2 Main results and related work

In this section, we first present our main results and discuss the proof ideas. The detailed proofs of the
main results are placed in the appendix. Next, we discuss related work from multiple perspectives.

2.1 Main results

We use NNs{n} for n, s ∈ N to denote the set of functions realized by height-s ReLU NestNets with
as most n parameters. We will give the mathematical definition of NNs{n}. We first discuss some
notations regarding affine linear maps. We use L to denote the set of all affine linear maps, i.e.,

L ∶= {L ∶ L(x) =Wx + b, W ∈ Rd2×d1 , b ∈ Rd2 , d1, d2 ∈ N+}.
Let #L denote the number of parameters in L ∈L , i.e.,

#L = (d1 + 1)d2 if L(x) =Wx + b for W ∈ Rd2×d1 and b ∈ Rd2 .

We use g⃗ = (ϱ1,⋯, ϱk) to denote an activation function vector, where ϱi ∶ R → R is an activation
function for each i ∈ {1,⋯, k}. When g⃗ = (ϱ1,⋯, ϱk) is applied to a vector input x = (x1,⋯, xk),

g⃗(x) = (ϱ1(x1), ⋯, ϱk(xk)) for any x = (x1,⋯, xk) ∈ Rk.

Let set(g⃗) denote the function set containing all entries (functions) in g⃗. For example, if g⃗ =(ϱ1, ϱ2, ϱ3, ϱ2, ϱ1), then set(g⃗) = {ϱ1, ϱ2, ϱ3}.
3

To define NNs{n} for n, s ∈ N recursively, we first consider the degenerate case. Define

NN0{n} ∶= {idR, ReLU} =∶ NNs{0} for n, s ∈ N,

where idR ∶ R → R is the identity map. That is, we regard the identity map and ReLU as height-0
ReLU NestNets with n parameters or as height-s ReLU NestNets with 0 parameters.

Next, let us present the recursive step. For n, s ∈ N+, a (vector-valued) function ϕ ∈ NNs{n} has the
following form:

ϕ = Lm ○ g⃗m ○ ⋯ ○L1 ○ g⃗1 ○L0, (1)
where L0,⋯,Lm ∈ L are affine linear maps. Moreover, Equation (1) satisfies the following two
conditions:

• Condition on activation functions:
m⋃
i=1

set(g⃗i) = {ϱ1,⋯, ϱr} and ϱj ∈ s−1⋃
i=0
NNi{nj} for j = 1,⋯, r. (2)

Here, g⃗i is an activation function vector for each i ∈ {1,⋯,m}. All entries in g⃗1,⋯, g⃗m
form an activation function set {ϱ1,⋯, ϱr}. For each j ∈ {1,⋯, r}, ϱj can be realized by a
height-i NestNet with ≤ nj parameters for some i = ij ≤ s − 1. This condition means each
hidden neuron is activated by a NestNet of lower height.

• Condition on the number of parameters:
m∑
i=0

#Li + r∑
j=1

nj ≤ n. (3)

This condition means the total number of parameters is no more than n. The total number of
parameters is calculated by adding two parts. The first one is the number of parameters in
affine linear maps L0,⋯,Lm. The other part is the number of parameters in the activation
set {ϱ1,⋯, ϱr} formed by the entries in activation function vectors g⃗1,⋯, g⃗m.

Then, with two conditions in Equations (2) and (3), we can define NNs{n} for n, s ∈ N+ as follows:

NNs{n} ∶= {ϕ ∶ ϕ = Lm ○ g⃗m ○ ⋯ ○L1 ○ g⃗1 ○L0, L0,⋯,Lm ∈L ,
m⋃
i=1

set(g⃗i) = {ϱ1,⋯, ϱr},
ϱj ∈ s−1⋃

i=0
NNi{nj} for j = 1,⋯, r, m∑

i=0
#Li + r∑

j=1
nj ≤ n}.

We remark that, in the definition above, m can be equal to 0. In this case, the function ϕ degenerates
to an affine linear map.

In the NestNet example in Figure 1, the function ϕ therein is in ⋃n∈N NN2{n} and the activation
function vectors g⃗1 and g⃗2 can be represented as

g⃗1 = (ϱ1, ϱ2, ϱ1, ϱ1) and g⃗2 = (ϱ2, ϱ1, ϱ1, ϱ2, ϱ2).
Moreover, the activation function set containing all entries in g⃗1 and g⃗2 is a subset of ⋃n∈N NN1{n},
i.e., {ϱ1, ϱ2} ⊆ ⋃n∈N NN1{n}.
Let C([0,1]d) denote the set of continuous functions on [0,1]d. By convention, the modulus of
continuity of a continuous function f ∈ C([0,1]d) is defined as

ωf(r) ∶= sup{∣f(x) − f(y)∣ ∶ ∥x − y∥2 ≤ r, x,y ∈ [0,1]d} for any r ≥ 0.

Under these settings, we can find a function in NNs{O(n)} to approximate f ∈ C([0,1]d) with an
approximation error O(ωf(n−(s+1)/d)), as shown in the main theorem below.

Theorem 2.1. Given a continuous function f ∈ C([0,1]d), for any n, s ∈ N+ and p ∈ [1,∞], there
exists ϕ ∈ NNs{Cs,d(n + 1)} such that

∥ϕ(x) − f(x)∥
Lp([0,1]d) ≤ 7√dωf(n−(s+1)/d),

where Cs,d = 103d2(s + 7)2 if p ∈ [1,∞) and Cs,d = 10d+3d2(s + 7)2 if p =∞.

4

We remark that the constant Cs,d in Theorem 2.1 is valid for all n ∈ N+. As we shall see later, Cs,d

can be greatly reduced if one only cares about large n ∈ N+. Generally, it is challenging to simplify
the approximation error in Theorem 2.1 to make it explicitly depend on n due to the complexity of
ωf(⋅). However, the approximation error can be simplified to an explicit one depending on n in the
case of special target function spaces like Hölder continuous function space. To be exact, if f is a
Hölder continuous function on [0,1]d of order α ∈ (0,1] with a Hölder constant λ > 0, then

∣f(x) − f(y)∣ ≤ λ∥x − y∥α2 for any x,y ∈ [0,1]d,

implying ωf(r) ≤ λrα for any r ≥ 0. This means we can get an exponentially small approximation
error 7λ

√
dn−(s+1)α/d as shown in Corollary 2.2 below.

Corollary 2.2. Suppose f is a Hölder continuous function on [0,1]d of order α ∈ (0,1] with a
Hölder constant λ > 0. For any n, s ∈ N+ and p ∈ [1,∞], there exists ϕ ∈ NNs{Cs,d(n + 1)} such
that ∥ϕ(x) − f(x)∥

Lp([0,1]d) ≤ 7λ√dn−(s+1)α/d,
where Cs,d = 103d2(s + 7)2 if p ∈ [1,∞) and Cs,d = 10d+3d2(s + 7)2 if p =∞.

In Corollary 2.2, if α = 1, i.e., f is a Lipschitz continuous function with a Lipschitz constant
λ > 0, then the approximation error can be further simplified to 7λ

√
dn−(s+1)/d. See Table 1 for the

comparison of the approximation error of 1-Lipschitz continuous functions on [0,1]d approximated
by ReLU NestNets and standard ReLU networks.

2.2 Sketch of proving Theorem 2.1

We will discuss how to prove Theorem 2.1. Given a target function f ∈ C([0,1]d), the key point is
to construct an almost piecewise constant function realized by a ReLU NestNet to approximate f
well except for a small region. Then we can get the desired result by dealing with the approximation
in this small region. We divide the sketch of proving Theorem 2.1 into three main steps.

1. First, we divide [0,1]d into a union of cubes {Qβ}β∈{0,1,⋯,K−1}d and a small region Ω with
K = O(n(s+1)/d). Each Qβ is associated with a representative xβ ∈ Qβ for each vector index β.
See Figure 3 for an illustration for K = 4 and d = 2.

2. Next, we design a vector-valued function Φ1(x) to map the whole cube Qβ to its index β for
each β. Here, Φ1 can be defined/constructed via

Φ1(x) = [ϕ1(x1), ϕ1(x2), ⋯, ϕ1(xd)]T ,
where each one-dimensional function ϕ1 is a step function outside a small region. We can
efficiently construct ReLU NestNets with the desired size to approximate such an almost step
function ϕ1 with sufficiently many “steps” by using the composition architecture of ReLU
NestNets. See the appendix for the detailed construction.

3. Finally, we need to construct a function ϕ2 realized by a ReLU NestNet to map β approximately
to f(xβ) for each β ∈ {0,1,⋯,K − 1}d. Then we have

ϕ2 ○Φ1(x) = ϕ2(β) ≈ f(xβ) ≈ f(x) for any x ∈ Qβ and each β,

implying
ϕ ∶= ϕ2 ○Φ1 ≈ f on [0,1]d/Ω.

Then, we can get a good approximation on [0,1]d by using Lemma 3.4 of our previous paper [24]
to deal with the approximation inside Ω. We remark that, in the construction of ϕ2 ∶ Rd → R, we
only need to care about the values of ϕ2 at a set of Kd points {0,1,⋯,K − 1}d. As we shall see
later, this is the key point to ease the design of a ReLU NestNet with the desired size to realize ϕ2.

See Figure 3 for an illustration of the above steps. Observe that in Figure 3, we have

ϕ(x) = ϕ2 ○Φ1(x) = ϕ2(β) E1≈ f(xβ) E2≈ f(x)
for any x ∈ Qβ and each β ∈ {0,1,⋯,K −1}d. That means ϕ−f is bounded by E1+E2 on [0,1]d/Ω.
For any x ∈ Qβ and each β, we have

∥xβ −x∥2 ≤√d/K Ô⇒ ∣f(xβ) − f(x)∣ ≤ ωf(√d/K) Ô⇒ E2 ≤ ωf(√d/K).
5

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

Q0,0 Q1,0 Q2,0 Q3,0

Q0,1 Q1,1 Q2,1 Q3,1

Q0,2 Q1,2 Q2,2 Q3,2

Q0,3 Q1,3 Q2,3 Q3,3

xβ Ω Qβ Φ1(x) = β
for x ∈ Qβ

A set of
d-dimensional indices:

β ∈ {0,1,⋯,K − 1}d
ϕ2(β) ≈ f(xβ)

A set of function values
at representatives:

{f(xβ) ∶ β ∈ {0,1,⋯,K − 1}d}
Figure 3: An illustration of the ideas of constructing ϕ = ϕ2 ○Φ1 to approximate f for K = 4 and
d = 2. Note that ϕ ≈ f outside Ω since ϕ(x) = ϕ2 ○Φ1(x) = ϕ2(β) ≈ f(xβ) ≈ f(x) for any x ∈ Qβ

and each β ∈ {0,1,⋯,K − 1}d.

The upper bound of E1 is determined by the construction of ϕ2 ∶ Rd → R. As stated previously, we
only need to care about the values of ϕ2 at a set of Kd points {0,1,⋯,K − 1}d ⊆ Rd, which gives us
much freedom to control E1. As we shall see later, E1 can be bounded byO(ωf(√d/K)). Therefore,
ϕ − f is controlled by O(ωf(√d/K)) outside Ω, from which we deduce the desired approximation
error on [0,1]d/Ω since K = O(n−(s+1)/d). Finally, by using Lemma 3.4 of our previous paper [24]
to deal with the approximation inside Ω, we can get the desired approximation error on [0,1]d.

2.3 Related work

We first compare our results with existing ones from an approximation perspective. Next, we discuss
the parameter-sharing schemes of neural networks. Finally, we connect our NestNet architecture to
existing trainable activation functions.

Discussion from an approximation perspective

The study of the approximation power of deep neural networks has become an active topic in recent
years. This topic has been extensively studied from many perspectives, e.g., in terms of combinatorics
[27], topology [7], information theory [29], fat-shattering dimension [1, 21], Vapnik-Chervonenkis
(VC) dimension [6, 14, 32], classical approximation theory [3, 4, 8, 9, 10, 11, 12, 13, 18, 22, 24, 25,
28, 34, 35, 38, 39, 42, 48, 49, 52, 53], etc. To the best of our knowledge, the study of neural network
approximation has two main stages: shallow (one-hidden-layer) networks and deep networks.

In the early works of neural network approximation, the approximation power of shallow networks is
investigated. In particular, the universal approximation theorem [11, 17, 18], without approximation
error estimate, showed that a sufficiently large neural network can approximate a target function
in a certain function space arbitrarily well. For one-hidden-layer neural networks of width n and
sufficiently smooth functions, an asymptotic approximation error O(n−1/2) in the L2-norm is proved
in [4, 5], leveraging an idea that is similar to Monte Carlo sampling for high-dimensional integrals.

Recently, a large number of works focus on the study of deep neural networks. It is shown in
[35, 49, 52] that the optimal approximation error is O(n−2/d) by using ReLU networks with n
parameters to approximate 1-Lipschitz continuous functions on [0,1]d. This optimal approximation
error follows a natural question: How can we get a better approximation error? Generally, there
are two ideas to get better errors. The first one is to consider smaller function spaces, e.g., smooth
functions [24, 50] and band-limited functions [26]. The other one is to introduce new networks,
e.g., Floor-ReLU networks [36], Floor-Exponential-Step (FLES) networks [37], and (Sin, ReLU,
2x)-activated networks [20].

This paper proposes a three-dimensional neural network architecture by introducing one more
dimension called height beyond width and depth. As shown in Theorem 2.1 and Corollary 2.2, neural
networks with three-dimensional architectures are significantly more expressive than the ones with
two-dimensional architectures. We will conduct experiments to explore the numerical properties of
NestNets in Section 3.

6

Discussion from a parameter-sharing perspective

As discussed previously, our NestNet architecture can be regarded as a sufficiently large standard
network architecture with a specific parameter-sharing scheme. Parameter-sharing schemes are
used in neural networks to control the overall number of parameters for reducing memory and
communication costs. There are two common parameter-sharing schemes for a neural network. The
first scheme is to share parameters in the same layer. A typical network example with this scheme is
the convolutional neural network (CNN). In CNN architectures, filters in a CNN layer are shared for
all channels, which means the parameters in the filters are shared. The second scheme is to share
parameters across different layers of networks, e.g., recurrent neural networks.

In the NestNet architecture, we share parameters via repetitions of sub-network activation functions.
Both of parameter-sharing schemes discussed just above are used in the NestNet architecture. The
nested architecture of NestNets gives us much freedom to determine how many parameters to share.
Beyond parameter-sharing schemes for a neural network, there are also parameter-sharing schemes
among different neural networks or models, especially for multi-task Learning. One may refer to
[30, 33, 44, 45, 46, 51] for more discussion on parameter sharing in neural networks.

Connection to trainable activation functions

The key idea of trainable activation functions is to add a small number of trainable parameters to
existing activation functions. Let us present several existing trainable activation functions as follows.
A ReLU-like function is introduced in [15] by modifying the negative part of ReLU using a trainable

parameter α, i.e., the parametric ReLU (PReLU) is defined as PReLU(x) ∶= {x if x ≥ 0
αx if x < 0. A variant

of ELU unit is introduced in [43] by adding two trainable parameters β, γ > 0, i.e., the parametric

ELU (PELU) is given by PELU(x) ∶= {β/γ if x ≥ 0
β(exp(x/γ) − 1)x if x < 0. Authors in [31] propose a type

of Flexible ReLU (FReLU), which is defined via FReLU(x) ∶= ReLU(x + α) + β, where α and
β are two trainable parameters. One may refer to [2] for a survey of modern trainable activation
functions. To the best of our knowledge, most existing trainable activation functions can be regarded
as parametric variants of the original activation functions. That is, they are attained via parameterizing
the original activation functions with a small number of (typically 1 or 2) trainable parameters.

By contrast, activation functions in our NestNets are much more flexible. They can be (realized
by) either complicated or simple sub-NestNets. That is, we can freely determine the number of
parameters in the activation functions of NestNets. In other words, in NestNets, we can randomly
distribute the parameters in the affine linear maps and activation functions. In short, compared to the
networks with existing trainable activation functions, our NestNets are more flexible and have much
more freedom in the choice of activation functions.

3 Experimentation

In this section, we will conduct experiments as a proof of concept to explore the numerical properties
of ReLU NestNets. It is challenging to tune the hyper-parameters of large NestNets due to their
nested architectures. Thus, our experimentation focuses on relatively small NestNets of height
2 and we introduce a simple sub-network activation function ϱ, which is realized by a trainable
one-hidden-layer ReLU network of width 3. To be exact, ϱ is given by

ϱ(x) =wT
1 ⋅ (xw0 + b0) + b1 for any x ∈ R, (4)

where w0,w1,b0 ∈ R3 and b1 ∈ R are trainable parameters. There are 10 parameters in ϱ. The initial
settings for ϱ in our experiments are w0 = (1,1,1), w1 = (1,1,−1), b0 = (−0.2,−0.1,0.0), and
b1 = 0. We believe that NestNets can achieve good results in some real-world applications if proper
optimization algorithms are developed for NestNets. In this paper, we only consider two classification
problems: a synthetic classification problem based on the Archimedean spiral in Section 3.1 and an
image classification problem corresponding to a standard benchmark dataset Fashion-MNIST [47]
in Section 3.2. We remark that a classification function can be continuously extended to Rd if each
class of samples are located in a bounded closed subset of Rd and these subsets are pairwise disjoint.
That means we can apply our theory to classification problems.

7

3.1 Archimedean spiral

We will design a binary classification experiment by constructing two disjoint sets based on the
Archimedean spiral, which can be described by the equation r = a + bθ in polar coordinates (r, θ) for
given a, b ∈ R. Let us first define two curves (Archimedean spirals) as follows:

C̃i ∶= {(x, y) ∶ x = ri cos θ, y = ri sin θ, ri = ai + biθ, θ ∈ [0, sπ]},
for i = 0,1, where a0 = 0, a1 = 1, b0 = b1 = 1/π, and s = 30. To simplify the discussion below, we
normalize C̃i as Ci ⊆ [0,1]2, where Ci is defined by

Ci ∶= {(x, y) ∶ x = x̃
2(s+2) + 1

2
, y = ỹ

2(s+2) + 1
2
, (x̃, ỹ) ∈ C̃i},

for i = 0,1. Then, we can define the two desired sets as follows:

Si ∶= {(u, v) ∶√(u − x)2 + (v − y)2 ≤ ε, (x, y) ∈ Ci},
for i = 0,1, where ε = 0.005 in our experiments. See an illustration for S0 and S1 in Figure 4.

0.0 0.5 1.0
0.0

0.5

1.0 S0

S1

Figure 4: An illustration for S0 and S1.

Input FC ActFun BatchNorm

BatchNorm ActFun FC

FC ActFun BatchNorm

BatchNorm ActFun FC

FC BatchNorm Softmax Output

Figure 5: A network architecture illustration.

To explore the numerical performance of NestNets, we design NestNets and standard networks to
classify samples in S0⋃S1. We adopt four-hidden-layer fully connected network architecture of
width 20, 35, or 50. To make the optimization more stable, we add the layers of batch normalization
[19]. See Figure 5 for an illustration of the full network architecture. In Figure 5, FC and ActFun
are short of fully connected layer and activation function, respectively. ActFun is ReLU for standard
networks, while for NestNets, ActFun is the learnable sub-network activation function ϱ given in
Equation (4).

Before presenting the experiment results, let us present the hyper-parameters for training the networks
mentioned above. For each i ∈ {0,1}, we randomly choose 3 × 105 training samples and 3 × 104 test
samples in Si with label i. Then, we use these 6 × 105 training samples to train the networks and use
these 6 × 104 test samples to compute the test accuracy. We use the cross-entropy loss function to
evaluate the loss between the networks and the target classification function. The number of epochs
and the batch size are set to 500 and 512, respectively. We adopt RAdam [23] as the optimization
method. In epochs 5(i − 1) + 1 to 5i for i = 1,2,⋯,100, the learning rate is 0.2 × 0.002 × 0.9i−1 for
the parameters in ϱ and 0.002 × 0.9i−1 for all other parameters. We remark that all training (test)
samples are standardized before training, i.e., we rescale the samples to have a mean of 0 and a
standard deviation of 1.

Finally, let us present the experiment results to compare the numerical performances of NestNets
and standard networks. We adopt the average of test accuracies in the last 100 epochs as the target
test accuracy. As we can see from Table 2 and Figure 6, by adding 10 more parameters (stored in ϱ),
NestNets achieve much better test accuracies than standard networks though slightly more training
time is required. In an “unfair” comparison, the test accuracy attained by the NestNet with 1.4 × 103
parameters is still better than that of the standard network with 7.9×103 parameters. This numerically
verifies that the NestNet has much better approximation power than the standard network.

3.2 Fashion-MNIST

We will design convolutional neural network (CNN) architectures activated by ReLU or the sub-
network activation function ϱ given in Equation (4) to classify image samples in Fashion-MNIST [47].

8

Table 2: Test accuracy comparison.

width depth #parameters activation function training time test accuracy

standard network 20 4 1362 ReLU ≈ 2532 s 0.738290
NestNet 20 4 1362 + 10 sub-network (ϱ) ≈ 4016 s 0.873631

standard network 35 4 3957 ReLU ≈ 2595 s 0.816048
NestNet 35 4 3957 + 10 sub-network (ϱ) ≈ 4104 s 0.995962

standard network 50 4 7902 ReLU ≈ 2642 s 0.866118
NestNet 50 4 7902 + 10 sub-network (ϱ) ≈ 4218 s 0.999984

0 100 200 300 400 500
epoch

0.4

0.6

0.8

1.0

ac
cu

ra
cy

Standard

NestNet

(a) Width = 20.

0 100 200 300 400 500
epoch

0.4

0.6

0.8

1.0

ac
cu

ra
cy

Standard

NestNet

(b) Width = 35.

0 100 200 300 400 500
epoch

0.4

0.6

0.8

1.0

ac
cu

ra
cy

Standard

NestNet

(c) Width = 50.

Figure 6: Test accuracy over epochs.

This dataset consists of a training set of 6 × 104 samples and a test set of 104 samples. Each sample
is a 28 × 28 grayscale image, associated with a label from 10 classes. To compare the numerical
performances of NestNets and standard networks, we design a standard CNN architecture and a
NestNet architecture that is constructed by replacing a few activation functions of a standard CNN
network by the sub-network activation function ϱ. For simplicity, we denote the standard CNN and
the NestNet as CNN1 and CNN2. To make the optimization more stable, we add the layers of dropout
[16, 41] and batch normalization [19]. See illustrations of CNN1 and CNN2 in Figure 7. We present
more details of them in Table 3.

Input Conv ReLU BatchNorm Conv ReLU

ReLU FC BatchNorm Flatten Dropout MaxPool

Dropout BatchNorm FC BatchNorm Softmax Output

(a) CNN1.

Input Conv SubNet (ϱ) BatchNorm Conv SubNet (ϱ)

SubNet (ϱ) FC BatchNorm Flatten Dropout MaxPool

Dropout BatchNorm FC BatchNorm Softmax Output

(b) CNN2.

Figure 7: Illustrations of CNN1 and CNN2. Conv and FC represent convolutional and fully connected
layers, respectively. CNN2 is indeed a NestNet of height 2.

Table 3: Details of CNN1 and CNN2.

layers activation function output size of each layer dropout batch normalization
CNN1 CNN2

input ∈ R28×28 28 × 28
Conv-1: 1 × (3 × 3), 12 ReLU SubNet (ϱ), 1 × (26 × 26)

ReLU, 11 × (26 × 26) 12 × (26 × 26) yes

Conv-2: 12 × (3 × 3), 12 ReLU SubNet (ϱ), 1 × (24 × 24)
ReLU, 11 × (24 × 24) 1728 (MaxPool & Flatten) 0.25 yes

FC-1: 1728, 48 ReLU SubNet (ϱ), 1
ReLU, 47

48 0.5 yes

FC-2: 48, 10 10 (Softmax) yes

output ∈ R10

Before presenting the numerical results, let us present the hyper-parameters for training two CNN
architectures above. We use the cross-entropy loss function to evaluate the loss between the CNNs
and the target classification function. The number of epochs and the batch size are set to 500 and 128,
respectively. We adopt RAdam [23] as the optimization method and the weight decay of the optimizer
is 0.0001. In epochs 5(i − 1) + 1 to 5i for i = 1,2,⋯,100, the learning rate is 0.2 × 0.002 × 0.9i−1

9

for the parameters in ϱ and 0.002 × 0.9i−1 for all other parameters. All training (test) samples in the
Fashion-MNIST dataset are standardized in our experiment, i.e., we rescale all training (test) samples
to have a mean of 0 and a standard deviation of 1. In the settings above, we repeat the experiment
18 times and discard 3 top-performing and 3 bottom-performing trials by using the average of test
accuracy in the last 100 epochs as the performance criterion. For each epoch, we adopt the average of
test accuracies in the rest 12 trials as the target test accuracy.

Next, let us present the experiment results to compare the numerical performances of CNN1 and
CNN2. The test accuracy comparison of CNN1 and CNN2 is summarized in Table 4.

Table 4: Test accuracy comparison.

training time largest accuracy average of largest 100 accuracies average accuracy in last 100 epochs

CNN1 ≈ 5802 s 0.925290 0.924796 0.924447

CNN2 ≈ 7217 s 0.926620 0.926287 0.926032

For each of CNN1 and CNN2, we present the training time, the largest test accuracy, the average
of the largest 100 test accuracies, and the average of test accuracies in the last 100 epochs. For an
intuitive comparison, we also provide illustrations of the test accuracy over epochs for CNN1 and
CNN2 in Figure 8. As we can see from Table 4 and Figure 8, CNN2 performs better than CNN1
though slightly more training time and 10 more parameters are required. This numerically shows that
the NestNet is significantly more expressive than the standard network.

0 100 200 300 400

epoch

0.86

0.88

0.90

0.92

0.94

ac
cu

ra
cy

CNN1

CNN2

(a) Epochs 1-400.

400 420 440 460 480 500

epoch

0.920

0.922

0.924

0.926

0.928

ac
cu

ra
cy

CNN1

CNN2

(b) Epochs 401-500.

Figure 8: Test accuracy over epochs.

4 Conclusion

This paper proposes a three-dimensional neural network architecture by introducing one more
dimension called height beyond width and depth. We show by construction that neural networks with
three-dimensional architectures are significantly more expressive than the ones with two-dimensional
architectures. We use simple numerical examples to show the advantages of the super-approximation
power of ReLU NestNets, which is regarded as a proof of possibility. It would be of great interest to
further explore the numerical performance of NestNets to bridge our theoretical results to applications.
We believe that NestNets can be further developed and applied to real-world applications.

We remark that our analysis is limited to the ReLU activation function and the (Hölder) continuous
function space. It would be interesting to generalize our results to other activation functions (e.g.,
tanh and sigmoid functions) and other function spaces (e.g, Lebesgue and Sobolev spaces).

Acknowledgments

Z. Shen was supported by Distinguished Professorship of National University of Singapore. H. Yang
was partially supported by the US National Science Foundation under award DMS-2244988, DMS-
2206333, and the Office of Naval Research Award N00014-23-1-2007.

10

References
[1] Martin Anthony and Peter L. Bartlett. Neural Network Learning: Theoretical Foundations. Cambridge

University Press, New York, NY, USA, 1st edition, 2009.

[2] Andrea Apicella, Francesco Donnarumma, Francesco Isgrò, and Roberto Prevete. A survey on modern
trainable activation functions. Neural Networks, 138:14–32, 2021.

[3] Chenglong Bao, Qianxiao Li, Zuowei Shen, Cheng Tai, Lei Wu, and Xueshuang Xiang. Approximation
analysis of convolutional neural networks. Semantic Scholar e-Preprint, page Corpus ID: 204762668,
2019.

[4] Andrew R. Barron. Universal approximation bounds for superpositions of a sigmoidal function. IEEE
Transactions on Information Theory, 39(3):930–945, May 1993.

[5] Andrew R. Barron and Jason M. Klusowski. Approximation and estimation for high-dimensional deep
learning networks. arXiv e-prints, page arXiv:1809.03090, September 2018.

[6] Peter Bartlett, Vitaly Maiorov, and Ron Meir. Almost linear VC-dimension bounds for piecewise polyno-
mial networks. Neural Computation, 10(8):2159–2173, 1998.

[7] Monica Bianchini and Franco Scarselli. On the complexity of neural network classifiers: A comparison
between shallow and deep architectures. IEEE Transactions on Neural Networks and Learning Systems,
25(8):1553–1565, Aug 2014.

[8] Helmut. Bölcskei, Philipp. Grohs, Gitta. Kutyniok, and Philipp. Petersen. Optimal approximation with
sparsely connected deep neural networks. SIAM Journal on Mathematics of Data Science, 1(1):8–45, 2019.

[9] Minshuo Chen, Haoming Jiang, Wenjing Liao, and Tuo Zhao. Efficient approximation of deep ReLU
networks for functions on low dimensional manifolds. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc., 2019.

[10] Charles K. Chui, Shao-Bo Lin, and Ding-Xuan Zhou. Construction of neural networks for realization of
localized deep learning. Frontiers in Applied Mathematics and Statistics, 4:14, 2018.

[11] George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of Control,
Signals, and Systems, 2:303–314, 1989.

[12] Rémi Gribonval, Gitta Kutyniok, Morten Nielsen, and Felix Voigtlaender. Approximation spaces of deep
neural networks. Constructive Approximation, 55:259–367, 2022.

[13] Ingo Gühring, Gitta Kutyniok, and Philipp Petersen. Error bounds for approximations with deep ReLU
neural networks in W s,p norms. Analysis and Applications, 18(05):803–859, 2020.

[14] Nick Harvey, Christopher Liaw, and Abbas Mehrabian. Nearly-tight VC-dimension bounds for piecewise
linear neural networks. In Satyen Kale and Ohad Shamir, editors, Proceedings of the 2017 Conference on
Learning Theory, volume 65 of Proceedings of Machine Learning Research, pages 1064–1068, Amsterdam,
Netherlands, 07–10 Jul 2017. PMLR.

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In 2015 IEEE International Conference on Computer
Vision (ICCV), pages 1026–1034, 2015.

[16] Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Im-
proving neural networks by preventing co-adaptation of feature detectors. CoRR, abs/1207.0580, 2012.

[17] Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural Networks, 4(2):251–
257, 1991.

[18] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are universal
approximators. Neural Networks, 2(5):359–366, 1989.

[19] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In Proceedings of the 32nd International Conference on International Conference
on Machine Learning - Volume 37, ICML’15, page 448–456. JMLR.org, 2015.

[20] Yuling Jiao, Yanming Lai, Xiliang Lu, Fengru Wang, Jerry Zhijian Yang, and Yuanyuan Yang. Deep neural
networks with ReLU-Sine-Exponential activations break curse of dimensionality on hölder class. arXiv
e-prints, page arXiv:2103.00542, February 2021.

11

[21] Michael J. Kearns and Robert E. Schapire. Efficient distribution-free learning of probabilistic concepts. J.
Comput. Syst. Sci., 48(3):464–497, June 1994.

[22] Qianxiao Li, Ting Lin, and Zuowei Shen. Deep learning via dynamical systems: An approximation
perspective. Journal of the European Mathematical Society, to appear.

[23] Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei
Han. On the variance of the adaptive learning rate and beyond. In International Conference on Learning
Representations, 2020.

[24] Jianfeng Lu, Zuowei Shen, Haizhao Yang, and Shijun Zhang. Deep network approximation for smooth
functions. SIAM Journal on Mathematical Analysis, 53(5):5465–5506, 2021.

[25] Hadrien Montanelli and Haizhao Yang. Error bounds for deep ReLU networks using the Kolmogorov-
Arnold superposition theorem. Neural Networks, 129:1–6, 2020.

[26] Hadrien Montanelli, Haizhao Yang, and Qiang Du. Deep ReLU networks overcome the curse of dimen-
sionality for bandlimited functions. Journal of Computational Mathematics, 39(6):801–815, 2021.

[27] Guido F Montufar, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio. On the number of linear regions
of deep neural networks. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger,
editors, Advances in Neural Information Processing Systems 27, pages 2924–2932. Curran Associates,
Inc., 2014.

[28] Ryumei Nakada and Masaaki Imaizumi. Adaptive approximation and generalization of deep neural network
with intrinsic dimensionality. Journal of Machine Learning Research, 21(174):1–38, 2020.

[29] Philipp Petersen and Felix Voigtlaender. Optimal approximation of piecewise smooth functions using deep
ReLU neural networks. Neural Networks, 108:296–330, 2018.

[30] Bryan A. Plummer, Nikoli Dryden, Julius Frost, Torsten Hoefler, and Kate Saenko. Neural parameter
allocation search. In International Conference on Learning Representations, 2022.

[31] Suo Qiu, Xiangmin Xu, and Bolun Cai. Frelu: Flexible rectified linear units for improving convolutional
neural networks. In 2018 24th International Conference on Pattern Recognition (ICPR), pages 1223–1228,
Los Alamitos, CA, USA, aug 2018. IEEE Computer Society.

[32] Akito Sakurai. Tight bounds for the VC-dimension of piecewise polynomial networks. In Advances in
Neural Information Processing Systems, pages 323–329. Neural information processing systems foundation,
1999.

[33] Pedro Savarese and Michael Maire. Learning implicitly recurrent CNNs through parameter sharing. In
International Conference on Learning Representations, 2019.

[34] Zuowei Shen, Haizhao Yang, and Shijun Zhang. Nonlinear approximation via compositions. Neural
Networks, 119:74–84, 2019.

[35] Zuowei Shen, Haizhao Yang, and Shijun Zhang. Deep network approximation characterized by number of
neurons. Communications in Computational Physics, 28(5):1768–1811, 2020.

[36] Zuowei Shen, Haizhao Yang, and Shijun Zhang. Deep network with approximation error being reciprocal
of width to power of square root of depth. Neural Computation, 33(4):1005–1036, 03 2021.

[37] Zuowei Shen, Haizhao Yang, and Shijun Zhang. Neural network approximation: Three hidden layers are
enough. Neural Networks, 141:160–173, 2021.

[38] Zuowei Shen, Haizhao Yang, and Shijun Zhang. Deep network approximation: Achieving arbitrary
accuracy with fixed number of neurons. Journal of Machine Learning Research, 23(276):1–60, 2022.

[39] Zuowei Shen, Haizhao Yang, and Shijun Zhang. Deep network approximation in terms of intrinsic
parameters. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan
Sabato, editors, Proceedings of the 39th International Conference on Machine Learning, volume 162 of
Proceedings of Machine Learning Research, pages 19909–19934. PMLR, 17–23 Jul 2022.

[40] Zuowei Shen, Haizhao Yang, and Shijun Zhang. Optimal approximation rate of ReLU networks in terms
of width and depth. Journal de Mathématiques Pures et Appliquées, 157:101–135, 2022.

[41] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout:
A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research,
15(56):1929–1958, 2014.

12

[42] Taiji Suzuki. Adaptivity of deep ReLU network for learning in Besov and mixed smooth Besov spaces:
optimal rate and curse of dimensionality. In International Conference on Learning Representations, 2019.

[43] Ludovic Trottier, Philippe Giguère, and Brahim Chaib-draa. Parametric exponential linear unit for deep
convolutional neural networks. 2017 16th IEEE International Conference on Machine Learning and
Applications (ICMLA), pages 207–214, 2017.

[44] Matthew Wallingford, Hao Li, Alessandro Achille, Avinash Ravichandran, Charless Fowlkes, Rahul
Bhotika, and Stefano Soatto. Task adaptive parameter sharing for multi-task learning. In 2022 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages 7551–7560, 2022.

[45] Jiaxing Wang, Haoli Bai, Jiaxiang Wu, Xupeng Shi, Junzhou Huang, Irwin King, Michael Lyu, and Jian
Cheng. Revisiting parameter sharing for automatic neural channel number search. In H. Larochelle,
M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neural Information Processing
Systems, volume 33, pages 5991–6002. Curran Associates, Inc., 2020.

[46] Ze Wang, Xiuyuan Cheng, Guillermo Sapiro, and Qiang Qiu. ACDC: Weight sharing in atom-coefficient
decomposed convolution. arXiv e-prints, page arXiv:2009.02386, September 2020.

[47] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: a novel image dataset for benchmarking
machine learning algorithms. arXiv e-prints, page arXiv:1708.07747, August 2017.

[48] Dmitry Yarotsky. Error bounds for approximations with deep ReLU networks. Neural Networks, 94:103–
114, 2017.

[49] Dmitry Yarotsky. Optimal approximation of continuous functions by very deep ReLU networks. In
Sébastien Bubeck, Vianney Perchet, and Philippe Rigollet, editors, Proceedings of the 31st Conference
On Learning Theory, volume 75 of Proceedings of Machine Learning Research, pages 639–649. PMLR,
06–09 Jul 2018.

[50] Dmitry Yarotsky and Anton Zhevnerchuk. The phase diagram of approximation rates for deep neural
networks. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances in Neural
Information Processing Systems, volume 33, pages 13005–13015. Curran Associates, Inc., 2020.

[51] Lijun Zhang, Qizheng Yang, Xiao Liu, and Hui Guan. Rethinking hard-parameter sharing in multi-domain
learning. In 2022 IEEE International Conference on Multimedia and Expo (ICME), pages 01–06, 2022.

[52] Shijun Zhang. Deep neural network approximation via function compositions. PhD Thesis, National
University of Singapore, 2020. URL: https://scholarbank.nus.edu.sg/handle/10635/186064.

[53] Ding-Xuan Zhou. Universality of deep convolutional neural networks. Applied and Computational
Harmonic Analysis, 48(2):787–794, 2020.

13

https://scholarbank.nus.edu.sg/handle/10635/186064

Contents of main article and appendix

1 Introduction 1

2 Main results and related work 3

2.1 Main results . 3

2.2 Sketch of proving Theorem 2.1 . 5

2.3 Related work . 6

3 Experimentation 7

3.1 Archimedean spiral . 8

3.2 Fashion-MNIST . 8

4 Conclusion 10

A Proof of main theorem 15

A.1 Notations . 15

A.2 Detailed proof of Theorem 2.1 . 16

B Proof of auxiliary theorem 18

B.1 Key ideas of proving Theorem A.1 . 18

B.2 Detailed proof of Theorem A.1 . 20

C Proof of Proposition B.1 24

C.1 Lemmas for proving Proposition B.1 . 24

C.2 Detailed proof of Proposition B.1 . 27

D Proof of Proposition B.2 28

D.1 Lemmas for proving Proposition B.2 . 28

D.2 Detailed proof of Proposition B.2 . 30

D.3 Proof of Lemma D.2 for Proposition B.2 . 32

D.3.1 Proof of Lemma D.4 for Lemma D.2 . 33

D.3.2 Proof of Lemma D.5 for Lemma D.2 . 35

14

A Proof of main theorem

In this section, we will prove the main theorem, Theorem 2.1, based on an auxiliary theorem,
Theorem A.1, which will be proved in Section B. Notations throughout this paper are summarized in
Section A.1.

A.1 Notations

Let us summarize all basic notations used in this paper as follows.

• Let R, Q, and Z denote the set of real numbers, rational numbers, and integers, respectively.
• Let N and N+ denote the set of natural numbers and positive natural numbers, respectively.

That is, N+ = {1,2,3,⋯} and N = N+⋃{0}.
• For any x ∈ R, let ⌊x⌋ ∶=max{n ∶ n ≤ x, n ∈ Z} and ⌈x⌉ ∶=min{n ∶ n ≥ x, n ∈ Z}.
• Let 1S be the indicator (characteristic) function of a set S, i.e., 1S is equal to 1 on S and 0

outside S.
• The set difference of two sets A and B is denoted by A/B ∶= {x ∶ x ∈ A, x ∉ B}.
• Matrices are denoted by bold uppercase letters. For instance, A ∈ Rm×n is a real matrix

of size m × n, and AT denotes the transpose of A. Vectors are denoted as bold lowercase

letters. For example, v = [v1,⋯, vd]T = ⎡⎢⎢⎢⎢⎣
v1⋮
vd

⎤⎥⎥⎥⎥⎦ ∈ Rd is a column vector.

• For any p ∈ [1,∞), the p-norm (or ℓp-norm) of a vector x = [x1, x2,⋯, xd]T ∈ Rd is defined
by ∥x∥p = ∥x∥ℓp ∶= (∣x1∣p + ∣x2∣p +⋯ + ∣xd∣p)1/p.
In the case p =∞, ∥x∥∞ = ∥x∥ℓ∞ ∶=max{∣xi∣ ∶ i = 1,2,⋯, d}.

• By convention, ∑n2

j=n1
aj = 0 if n1 > n2, no matter what aj is for each j.

• Given any K ∈ N+ and δ ∈ (0, 1
K
), define a trifling region Ω([0,1]d,K, δ) of [0,1]d as

Ω([0,1]d,K, δ) ∶= d⋃
j=1
{x = [x1, x2,⋯, xd]T ∈ [0,1]d ∶ xj ∈ K−1⋃

k=1
(k
K
− δ, k

K
)}. (5)

In particular, Ω([0,1]d,K, δ) = ∅ if K = 1. See Figure 9 for two examples of trifling
regions.

0.00 0.25 0.50 0.75 1.00

0.00
0.25
0.50
0.75
1.00

δ δ δ δ

Ω([0, 1]d, K, δ) for K = 5 and d = 1

(a)
0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

Ω([0, 1]d, K, δ) for K = 4 and d = 2

(b)

Figure 9: Two examples of trifling regions. (a) K = 5, d = 1. (b) K = 4, d = 2.

• For a continuous piecewise linear function f(x), the x values where the slope changes are
typically called breakpoints.

• Let σ ∶ R→ R denote the rectified linear unit (ReLU), i.e. σ(x) =max{0, x} for any x ∈ R.

With a slight abuse of notation, we define σ ∶ Rd → Rd as σ(x) = ⎡⎢⎢⎢⎢⎣
max{0, x1}⋮
max{0, xd}

⎤⎥⎥⎥⎥⎦ for any

x = [x1,⋯, xd]T ∈ Rd.

15

• Let NNs{n} for n, s ∈ N+ denote the set of functions realized by height-s ReLU NestNets
with as most n parameters.

• A function ϕ realized by a ReLU network can be briefly described as follows:

x = h̃0
W0, b0

L0
h1

σ h̃1 ⋯ WL−1, bL−1

LL−1
hL

σ h̃L
WL, bL

LL
hL+1 = ϕ(x),

where Wi ∈ RNi+1×Ni and bi ∈ RNi+1 are the weight matrix and the bias vector in the i-th
affine linear transformation Li, respectively, i.e.,

hi+1 =Wi ⋅ h̃i + bi =∶ Li(h̃i) for i = 0,1,⋯, L,

and
h̃i = σ(hi) for i = 1,2,⋯, L.

In particular, ϕ can be represented in a form of function compositions as follows

ϕ = LL ○ σ ○ ⋯ ○L1 ○ σ ○L0,

which has been illustrated in Figure 10.

(x1, x2)

x1

x2

h1

h1,1

h1,2

h1,3

h1,4

h̃1

h̃1,1

h̃1,2

h̃1,3

h̃1,4

h2

h2,1

h2,2

h2,3

h2,4

h2,5

h̃2

h̃2,1

h̃2,2

h̃2,3

h̃2,4

h̃2,5

ϕ(x1, x2)

ϕ(x1, x2)

W0, b0

L0

W1, b1

L1

W2, b2

L2

ReLU

σ
ReLU

σ

L0 L1 L2

σ

σ

σ

σ

σ

σ

σ

σ

σ

Figure 10: An example of a ReLU network of width 5 and depth 2.

• The expression “a network of width N and depth L” means

– The number of neurons in each hidden layer of this network (architecture) is no more
than N .

– The number of hidden layers of this network (architecture) is no more than L.

A.2 Detailed proof of Theorem 2.1

The key point of proving Theorem 2.1 is to construct a piecewise constant function to approximate
the target continuous function. However, ReLU NestNets are unable to approximate piecewise
constant functions well the continuity of ReLU NestNets. Thus, we introduce the trifling region
Ω([0,1]d,K, δ), defined in Equation (5), and use ReLU NestNets to implement piecewise constant
functions outside the trifling region. To simplify the proof of Theorem 2.1, we introduce an auxiliary
theorem, Theorem A.1 below. It can be regarded as a weaker variant of Theorem 2.1, ignoring the
approximation in the trifling region.

Theorem A.1. Given a continuous function f ∈ C([0,1]d), for any n, s ∈ N+, there exists ϕ ∈NNs{355d2(s + 7)2(2n + 1)} such that ∥ϕ∥L∞(Rd) ≤ ∣f(0)∣ + ωf(√d) and

∣ϕ(x) − f(x)∣ ≤ 6√dωf(n−(s+1)/d) for any x ∈ [0,1]d/Ω([0,1]d,K, δ),
where K = ⌊n(s+1)/d⌋ and δ is an arbitrary number in (0, 1

3K
].

The proof of Theorem A.1 can be found in Section B. By assuming Theorem A.1 is true, we can
easily prove Theorem 2.1 for the case p ∈ [1,∞). To prove Theorem 2.1 for the case p =∞, we need
to control the approximation error in the trifling region. To this intent, we introduce a theorem to
handle the approximation inside the trifling region.

16

Theorem A.2 (Lemma 3.11 of [52] or Lemma 3.4 of [24]). Given any ε > 0,K ∈ N+, and δ ∈ (0, 1
3K
],

assume f ∈ C([0,1]d) and g ∶ Rd → R is a general function with

∣g(x) − f(x)∣ ≤ ε for any x ∈ [0,1]d/Ω([0,1]d,K, δ).
Then ∣ϕ(x) − f(x)∣ ≤ ε + d ⋅ ωf(δ) for any x ∈ [0,1]d,
where ϕ ∶= ϕd is defined by induction through ϕ0 ∶= g and

ϕi+1(x) ∶= mid(ϕi(x − δei+1), ϕi(x), ϕi(x + δei+1)) for i = 0,1,⋯, d − 1,

where {ei}di=1 is the standard basis in Rd and mid(⋅, ⋅, ⋅) is the function returning the middle value of
three inputs.

Now, let we prove Theorem 2.1 by assuming Theorem A.1 is true, the proof of which can be found in
Section B.

Proof of Theorem 2.1. We may assume f is not a constant function since it is a trivial case. Then
ωf(r) > 0 for any r > 0. Let us first consider the case p ∈ [1,∞). Set K = ⌊n(s+1)/d⌋ and choose a
sufficiently small δ ∈ (0, 1

3K
] such that

Kdδ(2∣f(0)∣ + 2ωf(√d))p = ⌊n(s+1)/d⌋dδ(2∣f(0)∣ + 2ωf(√d))p
≤ (ωf(n−(s+1)/d))p.

By Theorem A.1, there exists

ϕ ∈ NNs{355d2(s + 7)2(2n + 1)} ⊆ NNs{355d2(s + 7)2 ⋅ 2(n + 1)}⊆ NNs{103d2(s + 7)2(n + 1)}
such that ∥ϕ∥L∞(Rd) ≤ ∣f(0)∣ + ωf(√d) and

∣ϕ(x) − f(x)∣ ≤ 6√dωf(n−(s+1)/d) for any x ∈ [0,1]d/Ω([0,1]d,K, δ).
Since ∥f∥L∞([0,1]d) ≤ ∣f(0)∣ + ωf(√d) and the Lebesgue measure of Ω([0,1]d,K, δ) is bounded
by Kdδ, we have

∥ϕ − f∥p
Lp([0,1]d) = ∫Ω([0,1]d,K,δ)

∣ϕ(x) − f(x)∣pdx + ∫[0,1]d/Ω([0,1]d,K,δ)
∣ϕ(x) − f(x)∣pdx

≤Kdδ(2∣f(0)∣ + 2ωf(√d))p + (6√dωf(n−(s+1)/d))p
≤ (ωf(n−(s+1)/d))p + (6√dωf(n−(s+1)/d))p ≤ (7√dωf(n−(s+1)/d))p.

Hence, we have ∥f − ϕ∥Lp([0,1]d) ≤ 7√dωf(n−(s+1)/d).
Next, let us discuss the case p =∞. Set K = ⌊n(s+1)/d⌋ and choose a sufficiently small δ ∈ (0, 1

3K
]

such that
d ⋅ ωf(δ) ≤ ωf(n−(s+1)/d).

By Theorem A.1,
ϕ0 ∈ NNs{355d2(s + 7)2(2n + 1)}

such that

∣ϕ0(x) − f(x)∣ ≤ 6√dωf(n−(s+1)/d) for any x ∈ [0,1]d/Ω([0,1]d,K, δ).
By Theorem A.2 with g = ϕ0 and ε = 6√dωf(n−(s+1)/d) therein, we have

∣ϕ(x) − f(x)∣ ≤ ε + d ⋅ ωf(δ) ≤ 7√dωf(n−(s+1)/d) for any x ∈ [0,1]d,
where ϕ ∶= ϕd is defined by induction through

ϕi+1(x) ∶= mid(ϕi(x − δei+1), ϕi(x), ϕi(x + δei+1)) for i = 0,1,⋯, d − 1,

17

where {ei}di=1 is the standard basis in Rd and mid(⋅, ⋅, ⋅) is the function returning the middle value
of three inputs. It remains to estimate the number of parameters in the NestNet realizing ϕ = ϕd.
By Lemma 3.1 of [37], mid(⋅, ⋅, ⋅) can be realized by a ReLU network of width 14 and depth 2, and
hence with at most 14 × (14 + 1) × (2 + 1) = 630 parameters.

By defining a vector-valued function Φ0 ∶ Rd → R3 as

Φ0(x) ∶= [ϕ0(x − δe1), ϕ0(x), ϕ0(x + δe1)]T for any x ∈ Rd,

we have Φ0 ∈ NNs{32(355d2(s + 7)2(2n + 1))}, implying

ϕ1 =min(⋅, ⋅, ⋅) ○Φ0 ∈ NNs{630 + 32(355d2(s + 7)2(2n + 1))}
⊆ NNs{10(355d2(s + 7)2(2n + 1))}.

Similarly, we have

ϕ = ϕd ∈ NNs{10d(355d2(s + 7)2(2n + 1))} ⊆ NNs{10d(355d2(s + 7)2 ⋅ 2(n + 1))}
⊆ NNs{10d+3d2(s + 7)2(n + 1)}.

Thus, we finish the proof of Theorem 2.1.

B Proof of auxiliary theorem

We will prove the auxiliary theorem, Theorem A.1, in this section. We first present the key ideas
in Section B.1. Next, the detailed proof is presented in Section B.2, based on two propositions in
Section B.1, the proofs of which can be found in Sections C and D.

B.1 Key ideas of proving Theorem A.1

Our goal is to construct an almost piecewise constant function realized by a ReLU NestNet to
approximate the target function f ∈ C([0,1]d) well. The construction can be divided into three main
steps.

1. First, we divide [0,1]d into a union of “important” cubes {Qβ}β∈{0,1,⋯,K−1}d and the trifling
region Ω([0,1]d,K, δ), where K = O(n(s+1)/d). Each Qβ is associated with a representative
xβ ∈ Qβ for each vector index β. See Figure 13 for illustrations.

2. Next, we design a vector-valued function Φ1(x) to map the whole cube Qβ to its index β for
each β. Here, Φ1 can be defined/constructed via

Φ1(x) = [ϕ1(x1), ϕ1(x2), ⋯, ϕ1(xd)]T ,
where each one-dimensional function ϕ1 is a step function outside the trifling region and hence
can be realized by a ReLU NestNet.

3. The aim of the final step is essentially to solve a point fitting problem. We will construct a function
ϕ2 realized by a ReLU NestNet to map β approximately to f(xβ) for each β. Then we have

ϕ2 ○Φ1(x) = ϕ2(β) ≈ f(xβ) ≈ f(x) for any x ∈ Qβ and each β,

implying
ϕ ∶= ϕ2 ○Φ1 ≈ f on [0,1]d/Ω([0,1]d,K, δ).

We remark that, in the construction of ϕ2, we only need to care about the values of ϕ2 sampled
inside the set {0,1,⋯,K − 1}d, which is a key point to ease the design of a ReLU NestNet to
realize ϕ2 as we shall see later.

18

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

Q0,0 Q1,0 Q2,0 Q3,0

Q0,1 Q1,1 Q2,1 Q3,1

Q0,2 Q1,2 Q2,2 Q3,2

Q0,3 Q1,3 Q2,3 Q3,3

Ω([0, 1]d, K, δ) for K = 4 and d = 2

Qβ for β ∈ {0, 1, 2, 3}2

xβ for β ∈ {0, 1, 2, 3}2

Φ1(x) = β
for x ∈ Qβ

A set of
d-dimensional indices:

β ∈ {0,1,⋯,K − 1}d
ϕ2(β) ≈ f(xβ)

A set of function values
at representatives:

{f(xβ) ∶ β ∈ {0,1,⋯,K − 1}d}
Figure 11: An illustration of the ideas of constructing the desired function ϕ = ϕ2 ○Φ1. Note that
ϕ ≈ f outside the trifling region since ϕ(x) = ϕ2 ○Φ1(x) = ϕ2(β) ≈ f(xβ) ≈ f(x) for any x ∈ Qβ

and each β ∈ {0,1,⋯,K − 1}d.

Observe that in Figure 11, we have

ϕ(x) = ϕ2 ○Φ1(x) = ϕ2(β) E1≈ f(xβ) E2≈ f(x)
for any x ∈ Qβ and each β ∈ {0,1,⋯,K − 1}d. That means ϕ − f is controlled by E1 + E2 on[0,1]d/Ω([0,1]d,K, δ). Since ∥x − xβ∥2 ≤ √d/K for any x ∈ Qβ and each β, E2 is bounded by
ωf(√d/K). As we shall see later, E1 can be bounded by O(ωf(√d/K)) by applying Proposi-
tion B.2. Therefore, ϕ − f is controlled by O(ωf(√d/K)) outside the trifling region, from which
we deduce the desired approximation error since K = O(n−(s+1)/d).
Finally, we introduce two propositions to simplify the constructions of Φ1 and ϕ2 mentioned above.
We first show how to construct a ReLU network to implement a one-dimensional step function ϕ1 in
Proposition B.1 below. Then Φ1 can be defined via

Φ1(x) ∶= [ϕ1(x1), ϕ1(x2), ⋯, ϕ1(xd)]T for any x = [x1, x2,⋯, xd]T ∈ Rd.

Proposition B.1. Given any n, r ∈ N+, δ ∈ (0,1), and J ∈ N+ with J ≤ 2n
r

, there exists ϕ ∈NNr{36(r + 7)n} such that

ϕ(x) = ⌊x⌋ for any x ∈ J−1⋃
j=0
[j, j + 1 − δ]

and
ϕ(x) = J for any x ∈ [J, J + 1].

The construction of ϕ2 is mainly based on Proposition B.2 below, whose proof relies on the bit
extraction technique proposed in [6]. As we shall see later, some pre-processing is necessary for
meeting the requirements of applying Proposition B.2 to construct ϕ2.

Proposition B.2. Given any ε > 0 and n, s ∈ N+, assume yj ≥ 0 for j = 0,1,⋯, J − 1 are samples
with J ≤ ns+1 and ∣yj − yj−1∣ ≤ ε for j = 1,2,⋯, J − 1.
Then there exists ϕ ∈ NNs{350(s + 7)2(n + 1)} such that

(i) ∣ϕ(j) − yj ∣ ≤ ε for j = 0,1,⋯, J − 1.

(ii) 0 ≤ ϕ(x) ≤max{yj ∶ j = 0,1,⋯, J − 1} for any x ∈ R.

The proofs of these two propositions can be found in Sections C and D. We will give the detailed
proof of Theorem A.1 in Section B.2.

19

B.2 Detailed proof of Theorem A.1

We essentially construct an almost piecewise constant function realized by a ReLU NestNet with
at most O(n) parameters to approximate f . We may assume f is not a constant function since
it is a trivial case. Then ωf(r) > 0 for any r > 0. It is clear that ∣f(x) − f(0)∣ ≤ ωf(√d) for
any x ∈ [0,1]d. By defining f̃ ∶= f − f(0) + ωf(√d), we have ωf̃(r) = ωf(r) for any r ≥ 0 and
0 ≤ f̃(x) ≤ 2ωf(√d) for any x ∈ [0,1]d.

Set K = ⌊n(s+1)/d⌋ and let δ be an arbitrary number in (0, 1
3K
]. The proof can be divided into four

main steps as follows:

1. Divide [0,1]d into a union of sub-cubes {Qβ}β∈{0,1,⋯,K−1}d and the trifling region
Ω([0,1]d,K, δ), and denote xβ as the vertex of Qβ with minimum ∥ ⋅ ∥1 norm.

2. Construct a sub-network based on Proposition B.1 to implement a vector function Φ1

projecting the whole cube Qβ to the d-dimensional index β for each β, i.e., Φ1(x) = β for
all x ∈ Qβ.

3. Construct a sub-network to implement a function ϕ2 mapping the index β approximately to
f̃(xβ). This core step can be further divided into three sub-steps:

3.1. Construct a sub-network to implement ψ1 bijectively mapping the index set{0,1,⋯,K − 1}d to an auxiliary set A1 ⊆ { j
2Kd ∶ j = 0,1,⋯,2Kd} defined later.

See Figure 14 for an illustration.
3.2. Determine a continuous piecewise linear function g with a set of breakpoints A1 ∪A2 ∪ {1}, where A2 ∈ { j

2Kd ∶ j = 0,1,⋯,2Kd} is a set defined later. Moreover, g
should satisfy two conditions: 1) the values of g at breakpoints in A1 is given based on{f̃(xβ)}β, i.e., g ○ ψ1(β) = f̃(xβ); 2) the values of g at breakpoints in A2 ∪ {1} is
defined to reduce the variation of g, which is necessary for applying Proposition B.2.

3.3. Apply Proposition B.2 to construct a sub-network to implement a function ψ2 approxi-
mating g well onA1 ∪A2 ∪{1}. Then the desired function ϕ2 is given by ϕ2 = ψ2 ○ψ1

satisfying ϕ2(β) = ψ2 ○ ψ1(β) ≈ g ○ ψ1(β) = f̃(xβ).
4. Construct the final network to implement the desired function ϕ via ϕ = ϕ2 ○Φ1 + f(0) −
ωf(√d). Then we have ϕ2 ○ Φ1(x) = ϕ2(β) ≈ f̃(xβ) ≈ f̃(x) for any x ∈ Qβ and
β ∈ {0,1,⋯,K − 1}d, implying ϕ(x) = ϕ2 ○Φ1(x) + f(0) − ωf(√d) ≈ f̃(x) + f(0) −
ωf(√d) = f(x).

x1 ϕ1

x2 ϕ1

xd ϕ1

ψ1 ψ2
ϕ2○Φ1(x)

Φ1(x) = [ϕ1(x1),⋯, ϕ1(xd)]T ϕ2 = ψ2 ○ ψ1

+f(0) − ωf(√d)
ϕ(x)

Figure 12: An illustration of the NestNet architecture realizing ϕ = ϕ2 ○Φ1 + f(0) − ωf(√d). Here,
ϕ1 is implemented via Proposition B.1; ψ1 ∶ Rd → R is an affine linear function; ψ2 is implemented
via Proposition B.2.

See Figure 12 for an illustration of the NestNet architecture realizing ϕ = ϕ2 ○Φ1 + f(0) − ωf(√d).
The details of the steps mentioned above can be found below.

Step 1∶ Divide [0,1]d into {Qβ}β∈{0,1,⋯,K−1}d and Ω([0,1]d,K, δ).
20

Define xβ ∶= β/K and

Qβ ∶= {x = [x1, x2,⋯, xd]T ∈ [0,1]d ∶ xi ∈ [βi

K
, βi+1

K
− δ ⋅ 1{βi≤K−2}], i = 1,2,⋯, d}

for each d-dimensional index β = [β1, β2,⋯, βd]T ∈ {0,1,⋯,K−1}d. Recall that Ω([0,1]d,K, δ) is
the trifling region defined in Equation (5). Apparently, xβ = β/K is the vertex of Qβ with minimum∥ ⋅ ∥1 norm and [0,1]d = (∪β∈{0,1,⋯,K−1}d Qβ)⋃Ω([0,1]d,K, δ).
See Figure 13 for illustrations.

0.00 0.25 0.50 0.75 1.00

δ

Q0

δ

Q1

δ

Q2 Q3

Ω([0, 1]d, K, δ) for K = 4 and d = 1

Qβ for β ∈ {0, 1, 2, 3}
xβ for β ∈ {0, 1, 2, 3}

(a)

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

Q0,0 Q1,0 Q2,0 Q3,0

Q0,1 Q1,1 Q2,1 Q3,1

Q0,2 Q1,2 Q2,2 Q3,2

Q0,3 Q1,3 Q2,3 Q3,3

Ω([0, 1]d, K, δ) for K = 4 and d = 2

Qβ for β ∈ {0, 1, 2, 3}2

xβ for β ∈ {0, 1, 2, 3}2

(b)

Figure 13: Illustrations of Ω([0,1]d,K, δ), Qβ, and xβ for β ∈ {0,1,⋯,K − 1}d. (a) K = 4 and
d = 1. (b) K = 4 and d = 2.

Step 2∶ Construct Φ1 mapping x ∈ Qβ to β.

Note that

K − 1 = ⌊n(s+1)/d⌋ − 1 ≤ ns+1 ≤ (ns)2 ≤ 4(ns) = 22(ns) ≤ 2(2n)s = 2ñs

,

where ñ = 2n. By Proposition B.1 with r = s and J =K − 1 ≤ 2ñs = 2ñr

therein, there exists

ϕ̃1 ∈ NNs{36(s + 7)ñ} = NNs{36(s + 7)(2n)} = NNs{72(s + 7)n}
such that

ϕ̃1(x) = ⌊x⌋ for any x ∈ K−2⋃
k=0
[k, k + 1 − δ̃] with δ̃ =Kδ

and
ϕ̃1(x) =K − 1 for any x ∈ [K − 1, K].

Define ϕ1(x) ∶= ϕ̃1(Kx) for any x ∈ R. Then, we have ϕ1 ∈ NNs{72(s + 7)n} and

ϕ1(x) = k if x ∈ [k
K
, k+1

K
− δ ⋅ 1{k≤K−2}] for k = 0,1,⋯,K − 1.

It follows that ϕ1(xi) = βi if x = [x1, x2,⋯, xd]T ∈ Qβ for each β = [β1, β2,⋯, βd]T .

By defining

Φ1(x) ∶= [ϕ1(x1), ϕ1(x2), ⋯, ϕ1(xd)]T for any x = [x1, x2,⋯, xd]T ∈ Rd,

we have
Φ1(x) = β if x ∈ Qβ for each β ∈ {0,1,⋯,K − 1}d. (6)

Step 3∶ Construct ϕ2 mapping β approximately to f̃(xβ).
The construction of the sub-network implementing ϕ2 is essentially based on Proposition B.2. To
meet the requirements of applying Proposition B.2, we first define two auxiliary sets A1 and A2 as

A1 ∶= { i
Kd−1 + k

2Kd ∶ i = 0,1,⋯,Kd−1 − 1 and k = 0,1,⋯,K − 1}
21

and A2 ∶= { i
Kd−1 + K+k

2Kd ∶ i = 0,1,⋯,Kd−1−1 and k = 0,1,⋯,K − 1}.
Clearly, A1 ∪A2 ∪ {1} = { j

2Kd ∶ j = 0,1,⋯,2Kd} and A1 ∩A2 = ∅.
See Figure 13 for an illustration of A1 and A2. Next, we further divide this step into three sub-steps.

Step 3.1∶ Construct ψ1 bijectively mapping {0,1,⋯,K − 1}d to A1.

Inspired by the binary representation, we define

ψ1(x) ∶= xd
2Kd

+ d−1∑
i=1

xi
Ki

for any x = [x1, x2,⋯, xd]T ∈ Rd. (7)

Then ψ1 is a linear function bijectively mapping the index set {0,1,⋯,K − 1}d to

{ψ1(β) ∶ β ∈ {0,1,⋯,K − 1}d} = { βd

2Kd + d−1∑
i=1

βi

Ki ∶ β ∈ {0,1,⋯,K − 1}d}
= { i

Kd−1 + k
2Kd ∶ i = 0,1,⋯,Kd−1−1 and k = 0,1,⋯,K − 1} = A1.

Step 3.2∶ Construct g to satisfy g ○ ψ1(β) = f̃(xβ) and to meet the requirements of applying
Proposition B.2.

Let g ∶ [0,1]→ R be a continuous piecewise linear function with a set of breakpoints

{ j
2Kd ∶ j = 0,1,⋯,2Kd} = A1 ∪A2 ∪ {1}.

Moreover, the values of g at these breakpoints are assigned as follows:

• At the breakpoint 1, let g(1) = f̃(1), where 1 = [1,1,⋯,1]T ∈ Rd.

• For the breakpoints in A1 = {ψ1(β) ∶ β ∈ {0,1,⋯,K − 1}d}, we set

g(ψ1(β)) = f̃(xβ) for any β ∈ {0,1,⋯,K − 1}d. (8)

• The values of g at the breakpoints in A2 are assigned to reduce the variation of g, which is a
requirement of applying Proposition B.2. Recall that

{ i
Kd−1 − K+1

2Kd ,
i

Kd−1 } ⊆ A1 ∪ {1} for i = 1,2,⋯,Kd−1,

implying the values of g at i
Kd−1 − K+1

2Kd and i
Kd−1 have been assigned in the previous

cases for. Thus, the values of g at the breakpoints in A2 can be successfully assigned
by letting g linear on each interval [i

Kd−1 − K+1
2Kd ,

i
Kd−1] for i = 1,2,⋯,Kd−1 since A2 ⊆⋃Kd−1

i=1 [i
Kd−1 − K+1

2Kd ,
i

Kd−1]. See Figure 14 for an illustration.

0.00 0.25 0.50 0.75 1.00

0

1 A1

A2

{1}
g

Figure 14: An illustration of A1, A2, {1}, and g for K = 4 and d = 2.

22

Apparently, such a function g exists. See Figure 14 for an illustration of g. It is easy to verify that

∣g(j
2Kd) − g(j−1

2Kd)∣ ≤max{ωf̃(√d
K
), ωf̃ (

√
d)

K
} ≤ ωf̃(√d

K
) = ωf(√d

K
)

for j = 1,2,⋯,2Kd. Moreover, we have

0 ≤ g(j
2Kd) ≤ 2ωf(√d) for j = 0,1,⋯,2Kd.

Step 3.3∶ Construct ψ2 approximating g well on A1 ∪A2 ∪ {1}.
Observe that

2Kd = 2(⌊n(s+1)/d⌋)d ≤ 2ns+1 ≤ (2n)s+1 = ñs+1, where ñ = 2n.
By Proposition B.2 with yj = g(j

2K2) and ε = ωf(√d
K
) > 0 therein, there exists

ψ̃2 ∈ NNs{350(s + 7)2(ñ + 1)} = NNs{350(s + 7)2(2n + 1)}
such that ∣ψ̃2(j) − g(j

2Kd)∣ ≤ ωf(√d
K
) for j = 0,1,⋯,2Kd − 1

and

0 ≤ ψ̃2(x) ≤max{g(j
2Kd) ∶ j = 0,1,⋯,2Kd − 1} ≤ 2ωf(√d) for any x ∈ R.

By defining ψ2(x) ∶= ψ̃2(2Kdx) for any x ∈ R, we have

0 ≤ ψ2(x) = ψ̃2(2Kdx) ≤ 2ωf(√d) for any x ∈ R (9)

and ∣ψ2(j
2Kd) − g(j

2Kd)∣ = ∣ψ̃2(j) − g(j
2Kd)∣ ≤ ωf(√d

K
) for j = 0,1,⋯,2Kd − 1. (10)

Let us end Step 3 by defining the desired function ϕ2 as ϕ2 ∶= ψ2 ○ ψ1. Recall that ψ1(β) = A1 ⊆{ j
2Kd ∶ j = 0,1,⋯,2Kd − 1}. Then, by Equations (8) and (10), we have

∣ϕ2(β) − f̃(xβ)∣ = ∣ψ2(ψ1(β)) − g(ψ1(β))∣ ≤ ωf(√d
K
) (11)

for any β ∈ {0,1,⋯,K − 1}d. Moreover, by Equation (9) and ϕ2 = ψ2 ○ ψ1, we have

0 ≤ ϕ2(x) = ψ2(ψ(x)) ≤ 2ωf(√d) for any x ∈ Rd. (12)

Step 4∶ Construct the final network to implement the desired function ϕ.

Define ϕ ∶= ϕ2 ○Φ1 + f(0) − ωf(√d). By Equation (12), we have

0 ≤ ϕ2 ○Φ1(x) ≤ 2ωf(√d)
for any x ∈ Rd, implying

f(0) − ωf(√d) ≤ ϕ(x) = ϕ2 ○Φ1(x) + f(0) − ωf(√d) ≤ f(0) + ωf(√d).
If follows that ∥ϕ∥L∞(Rd) ≤ ∣f(0)∣ + ωf(√d).
Next, let us estimate the approximation error. Recall that f = f̃ + f(0) − ωf(√d) and ϕ = ϕ2 ○Φ1 +
f(0) − ωf(√d). By Equations (6) and (11), for any x ∈ Qβ and β ∈ {0,1,⋯,K − 1}d, we have

∣f(x) − ϕ(x)∣ = ∣f̃(x) − ϕ2 ○Φ1(x)∣ = ∣f̃(x) − ϕ2(β)∣
≤ ∣f̃(x) − f̃(xβ)∣ + ∣f̃(xβ) − ϕ2(β)∣
≤ ωf(√d

K
) + ωf(√d

K
) ≤ 2ωf(2√dn−(s+1)/d),

23

where the last inequality comes from the fact

K = ⌊n(s+1)/d⌋ ≥ n(s+1)/d/2 for n ∈ N+.

Recall the fact ωf(j ⋅ r) ≤ j ⋅ ωf(r) for any j ∈ N+ and r ∈ [0,∞). Therefore, for any x ∈⋃β∈{0,1,⋯,K−1}d Qβ=[0,1]d/Ω([0,1]d,K, δ), we have

∣ϕ(x) − f(x)∣ ≤ 2ωf(2√dn−(s+1)/d) ≤ 2⌈2√d⌉ωf(n−(s+1)/d)
≤ 6√dωf(n−(s+1)/d).

x1

x2

...
xd

ϕ1(x1) = β1

ϕ1(x2) = β2

...
ϕ1(xd) = βd

ψ1(β) ψ2 ◦ ψ1(β) = ϕ2(β) = ϕ2 ◦Φ1(x) ϕ(x)
+f(0)− ωf (

√
d)

ϕ1

ϕ1

ϕ1

ψ1 ψ2

Block 1 Block 2 Block 3

Figure 15: An illustration of the final NestNet realizing ϕ = ϕ2 ○Φ1 + f(0) − ωf(√d) for x =[x1, x2,⋯, xd]T ∈ Qβ for each β ∈ {0,1,⋯,K − 1}d.

It remains to estimate the number of parameters in the NestNet realizing ϕ, which is shown in
Figure 15. Recall that ϕ1 ∈ NNs{72(s + 7)n}, ψ1 is an affine linear map, and ψ2 ∈ NNs{350(s +
7)2(2n + 1)}. Therefore, ϕ = ϕ2 ○Φ1 + f(0) − ωf(√d) can be realized by a height-s NestNet with
at most

d2(72(s + 7)n)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Block 1

+ (d + 1)´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
Block 2

+ 350(s + 7)2(2n + 1)´¹¹¸¹¹¶
Block 3

+ 1 ≤ 355d2(s + 7)2(2n + 1)
parameters, which means we finish the proof of Theorem A.1.

C Proof of Proposition B.1

The key point of proving Proposition B.1 is the composition architecture of neural networks. To
simplify the proof, we first establish several lemmas for proving Proposition B.1 in Section C.1. Next,
we present the detailed proof of Proposition B.1 in Section C.2 based on the lemmas established in
Section C.1.

C.1 Lemmas for proving Proposition B.1

Lemma C.1. Given any n, r ∈ N+ and δ ∈ (0, 1
C(r,n)) with C(r, n) = ∏r

i=1 2
ni

, there exists

ϕ ∈ NNr{(12r + 68)n} such that

ϕ(x) = ⌊x⌋ for any x ∈ 2nr
−1⋃

ℓ=0
[ℓ, ℓ + 1 −C(r, n) ⋅ δ].

We will prove Lemma C.1 by induction. To simplify the proof, we introduce two lemmas for the base
case and the induction step.

First, we introduce the following lemma for the base case of proving Lemma C.1.

Lemma C.2. Given any n ∈ N+ and δ ∈ (0,1), there exists a function ϕ realized by a ReLU network
of width 4 and depth 4n − 1 such that

ϕ(x) = ⌊x⌋ for any x ∈ 2n−1⋃
ℓ=0
[ℓ, ℓ + 1 − δ].

24

Proof. Set δ̃ = 2−nδ and define

ϕ0(x) ∶= σ(x − 1 + δ̃) − σ(x − 1)
δ̃

for x ∈ R.

Clearly, ϕ0 can be realized by a one-hidden-layer ReLU network of width 2. Moreover, we have

ϕ0(x) = σ(x − 1 + δ̃) − σ(x − 1)
δ̃

= 0 − 0
δ̃
= 0 if x ∈ [0,1 − δ̃]

and

ϕ0(x) = σ(x − 1 + δ̃) − σ(x − 1)
δ̃

= (x − 1 + δ̃) − (x − 1)
δ̃

= 1 if x ∈ [1,2 − δ̃].
By fixing

x ∈ 2n−1⋃
ℓ=0
[ℓ, ℓ + 1 − δ] = 2n−1⋃

ℓ=0
[ℓ, ℓ + 1 − 2nδ̃],

we have ⌊x⌋ ∈ {0,1,⋯,2n − 1}, implying that ⌊x⌋ can be represented as

⌊x⌋ = n−1∑
i=0

zi2
i for z0, z1,⋯, zn−1 ∈ {0,1}.

Then, for j = 0,1,⋯, n − 1, we have ∑j
i=0 zi2

i + 1 ≤ zj2j +∑j−1
i=0 2i + 1 ≤ zj2j + 2j , implying

x−∑n−1
i=j+1 zi2

i

2j
∈ [⌊x⌋−∑n−1

i=j+1 zi2
i

2j
,
⌊x⌋+1−2nδ̃−∑n−1

i=j+1 zi2
i

2j
] = [∑j

i=0 zi2
i

2j
,
∑j

i=0 zi2
i+1−2nδ̃

2j
]

⊆ [zj2j
2j
,
zj2

j+2j−2nδ̃
2j

] ⊆ [zj , zj + 1 − δ̃].
If follows that

ϕ0(x−∑n−1
i=j+1 zi2

i

2j
) = zj for j = 0,1,⋯, n − 1.

Therefore, the desired function ϕ can be realized by the network in Figure 16.

x

x
2n−1

x

zn−1

x

n−1∑

i=n−1

zi2
i

x

n−1∑

i=n−1

zi2
i

x−∑n−1
i=n−1 zi2

i

2n−2

x

n−1∑

i=n−1

zi2
i

zn−2

x

n−1∑

i=n−2

zi2
i

x

n−1∑

i=n−2

zi2
i

x−∑n−1
i=n−2 zi2

i

2n−3

x

n−1∑

i=n−2

zi2
i

zn−3

x

· · ·

n−1∑

i=1

zi2
i

x

n−1∑

i=1

zi2
i

x−∑n−1
i=1 zi2

i

20

x

n−1∑

i=1

zi2
i

z0

x

n−1∑

i=0

zi2
i = ⌊x⌋ =: ϕ(x)

ϕ0 ϕ0 ϕ0 ϕ0

Figure 16: An illustration of the NestNet realizing ϕ. Here, ϕ0 represent an one-hidden-layer ReLU
network of width 2.

Clearly,

ϕ(x) = ⌊x⌋ for any x ∈ 2n−1⋃
ℓ=0
[ℓ, ℓ + 1 − δ].

Moreover, ϕ can be realized by a ReLU network of width 1 + 2 + 1 = 4 and depth (1 + 1 + 1) + (1 +
1 + 1 + 1)(n − 1) = 4n − 1. Hence, we finish the proof of Lemma C.2.

Next, we introduce the following lemma for the induction step of proving Lemma C.1.

Lemma C.3. Given any n, s, n̂ ∈ N+ and δ ∈ (0, 1

2ns+1), if g ∈ NNs{n̂} satisfying

g(x) = ⌊x⌋ for any x ∈ 2ns
−1⋃

ℓ=0
[ℓ, ℓ + 1 − δ].

Then there exists ϕ ∈ NNs+1{n̂ + 12n − 7} such that

ϕ(x) = ⌊x⌋ for any x ∈ 2ns+1
−1⋃

ℓ=0
[ℓ, ℓ + 1 − 2ns+1

δ].
25

Proof. By setting m = 2ns

, we have mn = (2ns)n = 2(ns)n = 2ns+1

and

g(x) = ⌊x⌋ for any x ∈ m−1⋃
ℓ=0
[ℓ, ℓ + 1 − δ]. (13)

By fixing

x ∈ 2ns+1
−1⋃

ℓ=0
[ℓ, ℓ + 1 − 2ns+1

δ] = mn−1⋃
ℓ=0
[ℓ, ℓ + 1 −mnδ],

we have ⌊x⌋ ∈ {0,1,⋯,mn − 1}, implying that ⌊x⌋ can be represented as

⌊x⌋ = n−1∑
i=0

zim
i for z0, z1,⋯, zn−1 ∈ {0,1,⋯,m − 1}.

Then, for j = 0,1,⋯, n − 1, we have
j∑

i=0
zim

i + 1 ≤ zjmj + j−1∑
i=0
(m − 1)mi + 1 = zjmj +mj ,

implying

x−∑n−1
i=j+1 zim

i

mj ∈ [⌊x⌋−∑n−1
i=j+1 zim

i

mj ,
⌊x⌋+1−mnδ−∑n−1

i=j+1 zim
i

mj]
= [∑j

i=0 zim
i

mj ,
∑j

i=0 zim
i+1−mnδ

mj]
⊆ [zjmj

mj ,
zjm

j+mj−mnδ

mj] ⊆ [zj , zj + 1 − δ].
If follows that

g(x−∑n−1
i=j+1 zim

i

mj) = zj for j = 0,1,⋯, n − 1.
Therefore, the desired function ϕ can be realized by the network in Figure 17.

x

g
(

x
mn−1

)
= zn−1

x

n−1∑

i=n−1

zim
i

g
(

x−∑n−1
i=n−1 zim

i

mn−2

)
= zn−2

x

n−1∑

i=n−2

zim
i

g
(

x−∑n−1
i=n−2 zim

i

mn−3

)
= zn−3

x

n−1∑

i=n−3

zim
i

g
(

x−∑n−1
i=n−3 zim

i

mn−4

)
= zn−4

x

· · ·

n−1∑

i=1

zim
i

g
(

x−∑n−1
i=1 zim

i

m0

)
= z0

x

n−1∑

i=0

zim
i = ⌊x⌋ =: ϕ(x)

Figure 17: An illustration of the NestNet realizing ϕ. Here, g is regarded as an activation function.

Clearly,

ϕ(x) = ⌊x⌋ for any x ∈ mn−1⋃
ℓ=0
[ℓ, ℓ + 1 −mnδ] = 2n

s+1
−1⋃

ℓ=0
[ℓ, ℓ + 1 − 2ns+1

δ].
Moreover, the fact g ∈ NNs{n̂} implies that ϕ can be realized by a height-(s + 1) NestNet with at
most (1 + 1)2 + (2 + 1)3 + (3 + 1)3(n − 2) + (3 + 1)´¹¹¹¸¹¹¶

outer network

+ n̂®
g

= n̂ + 12n − 7
parameters. Hence, we finish the proof of Lemma C.3.

With Lemmas C.2 and C.3 in hand, we are ready to prove Lemma C.1.

Proof of Lemma C.1. We will use the mathematical induction to prove Lemma C.1. First, we consider
the base case r = 1. By Lemma C.2, there exists a function ϕ realized by a ReLU network of width 4
and depth 4n − 1 such that

ϕ(x) = ⌊x⌋ for any x ∈ 2n−1⋃
ℓ=0
[ℓ, ℓ + 1 − δ] ⊆ 2n−1⋃

ℓ=0
[ℓ, ℓ + 1 −C(r, n) ⋅ δ] with r = 1.

26

Moreover, the network realizing ϕ has at most (4 + 1)4((4n − 1) + 1) = 80n parameters, implying
ϕ ∈ NN1{80n} ⊆ NN1{(12r + 68)n} for r = 1. Thus, the base case r = 1 is proved.

Next, assume Lemma C.1 holds for r = s ∈ N+. We need to show it is also true for r = s + 1. By the
induction hypothesis, there exists g ∈ NNs{(12s + 68)n} such that

g(x) = ⌊x⌋ for any x ∈ 2ns
−1⋃

ℓ=0
[ℓ, ℓ + 1 −C(s, n) ⋅ δ].

By Lemma C.3 with n̂ = (12s + 68)n therein and setting δ̂ = C(s, n) ⋅ δ, there exists

ϕ ∈ NNs+1{n̂ + 12n − 7} ⊆ NNs+1{(12s + 68)n + 12n − 7} ⊆ NNs+1{(12(s + 1) + 68)n}
such that

ϕ(x) = ⌊x⌋ for any x ∈ 2ns+1
−1⋃

ℓ=0
[ℓ, ℓ + 1 − 2ns+1

δ̂].
Observe that

2n
s+1

δ̂ = 2ns+1

C(s, n) ⋅ δ = 2ns+1(s∏
i=1

2n
i) ⋅ δ = (s+1∏

i=1
2n

i) ⋅ δ = C(s + 1, n) ⋅ δ.
If follows that

ϕ(x) = ⌊x⌋ for any x ∈ 2ns+1
−1⋃

ℓ=0
[ℓ, ℓ + 1 −C(s + 1, n) ⋅ δ].

Thus, Lemma C.1 is proved for the case r = s + 1, which means we finish the induction step. Hence,
by the principle of induction, we complete the proof of Lemma C.1.

C.2 Detailed proof of Proposition B.1

Set C(r, n) =∏r
i=1 2

ni

and δ̃ = δ
C(r,n) ∈ (0, 1

C(r,n)). By Lemma C.1, there exists ϕ0 ∈ NNr{(12r+
68)n} such that

ϕ0(x) = ⌊x⌋ for any x ∈ 2nr
−1⋃

ℓ=0
[ℓ, ℓ + 1 −C(r, n) ⋅ δ̃] = 2n

r
−1⋃

ℓ=0
[ℓ, ℓ + 1 − δ].

It follows from J ≤ 2nr

that

ϕ0(x) = ⌊x⌋ for any x ∈ J−1⋃
j=0
[j, j + 1 − δ].

Set

M̃ = max
x∈[J,J+1]

∣ϕ0(x)∣ and M = M̃ + J
δ

.

Then, for any x ∈ [J, J + 1], we have

ϕ0(x) +Mσ(x − (J − δ)) ≥ −M̃ +Mδ = −M̃ + (M̃ + J) = J,
implying

min{ϕ0(x) +Mσ(x − (J − δ)), J} = J.
Moreover, for any x ∈ ⋃J−1

j=0 [j, j + 1 − δ], we have σ(x − (J − δ)) = 0, implying

min{ϕ0(x) +Mσ(x − (J − δ)), J} =min{ϕ0(x), J} =min{⌊x⌋, J} = ⌊x⌋.
Therefore, by defining

ϕ(x) ∶=min{ϕ0(x) +Mσ(x − (J − δ)), J} for any x ∈ J⋃
j=0
[j, j + 1 − δ ⋅ 1{j≤J−1}],

27

x

ϕ0(x)

σ
(
x− (J − δ)

)

σ

((
ϕ0(x) +Mσ(x− (J − δ))

)
+ J

)

σ

(
−
(
ϕ0(x) +Mσ(x− (J − δ))

)
− J

)

σ

((
ϕ0(x) +Mσ(x− (J − δ))

)
− J

)

σ

(
−
(
ϕ0(x) +Mσ(x− (J − δ))

)
+ J

)

min

{
ϕ0(x) +Mσ

(
x− (J − δ)

)
, J

}
= ϕ(x)

ϕ0

Block 1 Block 2

Figure 18: An illustration of the network realizing ϕ for any x ∈ ⋃J
j=0 [j, j + 1 − δ ⋅ 1{j≤J−1}] based

on the fact min{a, b} = 1
2
(σ(a + b) − σ(−a − b) − σ(a − b) − σ(−a + b)).

we have

ϕ(x) = ⌊x⌋ for any x ∈ J−1⋃
j=0
[j, j + 1 − δ]

and
ϕ(x) = J for any x ∈ [J, J + 1].

Moreover, ϕ can be realized by the network in Figure 18. The fact ϕ0 ∈ NNr{(12r + 68)n} implies
that ϕ can be realized by a height-r NestNet with at most

3((12r + 68)n)´¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Block 1

+ (2 + 1)4 + (4 + 1)´¹¹¹¸¹¹¶
Block 2

≤ 36(r + 7)n
parameters. So we finish the proof of Proposition B.1.

D Proof of Proposition B.2

The key idea of proving Proposition B.2 is the bit extraction technique proposed in [6]. First, we
establish several lemmas for proving Proposition B.2 and give their proofs in Section D.1 except for
Lemma D.2, the proof of which is placed in Section D.3 since it is complicated. Next, we present the
detailed proof of Proposition B.2 in Section D.2 based on the lemmas established in Section D.1.

D.1 Lemmas for proving Proposition B.2

To simplify the proof of Proposition B.2, we establish several lemmas as the intermediate step. We
first establish a lemma to show that any continuous piecewise linear functions on R can be realized
by one-hidden-layer ReLU networks.
Lemma D.1. Given any p ∈ N+, any continuous piecewise linear function on R with at most p
breakpoints can be realized by a one-hidden-layer ReLU network of width p + 1.

Proof. We will use the mathematical induction to prove Lemma D.1. First, we consider the base
case p = 1. Suppose f ∶ R → R is a continuous piecewise linear function on R with at most p = 1
breakpoints. Then there exist a1, a2, x0 ∈ R such that

f(x) = {a1(x − x0) + f(x0) if x ≥ x0
a2(x0 − x) + f(x0) if x < x0.

Thus, f(x) = a1σ(x − x0) + a2σ(x0 − x) + f(x0) for any x ∈ R, implying f can be realized by a
one-hidden-layer ReLU network of width 2 = p + 1 for p = 1. Hence, Lemma D.1 is proved for the
case p = 1.

Now, assume Lemma D.1 holds for p = k ∈ N+, we would like to show it is also true for p = k + 1.
Suppose f ∶ R→ R is a continuous piecewise linear function on with at most k + 1 breakpoints. We
may assume the biggest breakpoint of f is x0 since it is trivial for the case that f has no breakpoint.
Denote the slopes of the linear pieces left and right next to x0 by a1 and a2, respectively. Define

f̃(x) ∶= f(x) − (a2 − a1)σ(x − x0) for any x ∈ R.

28

Then f̃ has at most k breakpoints. By the induction hypothesis, f̃ can be realized by a one-hidden-
layer ReLU network of width k + 1. Thus, there exist w0,j , b0,j ,w1,j , b1 for j = 1,2,⋯, k + 1 such
that

f̃(x) = k+1∑
j=1

w1,jσ(w0,jx + b0,j) + b1 for any x ∈ R.

Therefore, for any x ∈ R, we have

f(x) = (a2 − a1)σ(x − x0) + f̃(x) = (a2 − a1)σ(x − x0) + k+1∑
j=1

w1,jσ(w0,jx + b0,j) + b1,
implying f can be realized by a one-hidden-layer ReLU network of width k + 2 = (k + 1) + 1 = p + 1
for p = k + 1. Thus, we finish the induction process. Therefore, by the principle of induction, we
complete the proof of Lemma D.1.

Next, we establish a lemma to extract the sum of ns bits via a height-s NestNet withO(n) parameters.

Lemma D.2. Given any n, s ∈ N+, there exists ϕ ∈ NNs{57(s + 7)2(n + 1)} such that: For any
θ1, θ2,⋯, θns ∈ {0,1}, we have

ϕ(k + bin0.θ1θ2⋯θns) = k∑
ℓ=1

θℓ for k = 0,1,⋯, ns. (14)

The proof of Lemma D.2 is complicated and hence is placed in Section D.3. Then, based on
Lemma D.2, we establish a new lemma, Lemma D.3 below, which is a key intermediate conclusion
to prove Proposition B.2.
Lemma D.3. Given any n, s ∈ N+ and θi,ℓ ∈ {0,1} for i = 0,1,⋯, n−1 and ℓ = 0,1,⋯,m−1, where
m = ns, there exists ϕ ∈ NNs{58(s + 7)2(n + 1)} such that

ϕ(j) = k∑
ℓ=0

θi,ℓ for j = 0,1,⋯, nm − 1,

where (i, k) is the unique index pair satisfying j = im + k with i ∈ {0,1,⋯, n − 1} and k ∈{0,1,⋯,m − 1}.
Proof. We first construct a network to extract the unique index pair (i, k) from j ∈ {0,1,⋯, nm − 1}
with the following condition

j = im + k with i ∈ {0,1,⋯, n − 1} and k ∈ {0,1,⋯,m − 1}.
There exists a continuous piecewise linear function ϕ1 with 2n breakpoints such that

ϕ1(x) = ⌊x⌋ for any x ∈ n−1⋃
ℓ=0
[ℓ, ℓ + 1 − δ] with δ = 1

2m
.

By Lemma D.1, ϕ1 can be realized by a one-hidden-layer ReLU network of width 2n + 1. Moreover,
for any j ∈ {0,1,⋯, nm − 1}, we have

ϕ1(j
m
) = ⌊ j

m
⌋ = i and j −mϕ1(j

m
) = j −mi = k,

where (i, k) is the unique index pair satisfying j = im + k with i ∈ {0,1,⋯, n − 1} and k ∈{0,1,⋯,m − 1}. By defining

Φ1(x) ∶= [ϕ1(x
m
)

x −mϕ1(x
m
)] for any x ≥ 0,

we have

Φ1(j) = [ϕ1(j
m
)

j −mϕ1(j
m
)] = [ik] for j = 0,1,⋯, nm − 1,

where (i, k) is the unique index pair satisfying j = im+k with i ∈ {0,1,⋯, n−1} and k ∈ {0,1,⋯,m−
1}. Moreover, Φ1 can be realized by a one-hidden-layer ReLU network of width 2(2n+1)+1 = 4n+3.
Hence, the network realizing Φ1 has at most (1+1)(4n+3)+((4n+3)+1)2 = 16n+14 parameters.

29

Define
zi ∶= bin0.θi,0θi,1⋯θi,m−1 for i = 0,1,⋯, n − 1.

There exists a continuous piecewise linear function ϕ̃2 with n breakpoints such that

ϕ̃2(i) = zi for i = 0,1,⋯, n − 1.

By Lemma D.1, ϕ̃2 can be realized by a one-hidden-layer ReLU network of width n + 1.

By Lemma D.2, there exists ϕ3 ∈ NNs{57(s+ 7)2(n+ 1)} such that: For any ξ1, ξ2,⋯, ξns ∈ {0,1},
we have

ϕ3(k + bin0.ξ1ξ2⋯ξns) = k∑
ℓ=1

ξℓ for k = 1,2,⋯, ns.

It follows from m = ns that, for any ξ0, ξ1,⋯, ξm−1 ∈ {0,1}, we have

ϕ3(k + bin0.ξ0ξ1⋯ξm−1) = k∑
ℓ=1

ξℓ−1 = k−1∑
ℓ=0

ξℓ for k = 1,2,⋯,m,

implying

ϕ3(k + 1 + bin0.ξ0ξ1⋯ξm−1) = k∑
ℓ=0

ξℓ for k = 0,1,⋯,m − 1.

Then, for i = 0,1,⋯, n − 1 and k = 0,1,⋯,m − 1, we have

ϕ3(k + 1 + ϕ̃2(i)) = ϕ2(k + 1 + zi) = ϕ3(k + 1 + bin0.θi,0θi,1⋯θi,m−1) = k∑
ℓ=0

θi,ℓ.

By defining
ϕ2(x, y) ∶= y + 1 + ϕ̃2(x) for any x, y ∈ [0,∞)

and ϕ ∶= ϕ3 ○ ϕ2 ○Φ1, we have

ϕ(j) = ϕ3 ○ ϕ2 ○Φ1(j) = ϕ3 ○ ϕ2(i, k) = ϕ3(k + 1 + ϕ̃2(i)) = k∑
ℓ=0

θi,ℓ

for j = 0,1,⋯, nm − 1, where (i, k) is the unique index pair satisfying j = im + k with i ∈{0,1,⋯, n − 1} and k ∈ {0,1,⋯,m − 1}.
It remains to estimate the number of parameters in the NestNet realizing ϕ = ϕ3 ○ ϕ2 ○Φ1. Observe
that ϕ2 can be realized by a one-hidden-layer ReLU network of width (n + 1) + 1 = n + 2. Then, the
network realizing ϕ2 has at most (2 + 1)(n + 2) + ((n + 2) + 1) = 4n + 9 parameters. Therefore, ϕ
can be realized by a height-s NestNet with at most

(16n + 14)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Φ1

+ (4n + 9)´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
ϕ2

+57(s + 7)2(n + 1)´¹¹¹¸¹¹¹¶
ϕ3

≤ 58(s + 7)2(n + 1)
parameters, which means we complete the proof of Lemma D.3.

D.2 Detailed proof of Proposition B.2

We may assume J = mn = ns+1 with m = ns since we can set yJ−1 = yJ = ⋯ = ymn−1 if J < mn.
Define

aj ∶= ⌊yj/ε⌋ for j = 0,1,⋯, nm − 1.
Our goal is to construct a function ϕ such that ϕ(j) = ajε for j = 0,1,⋯, nm − 1.

For i = 0,1,⋯, n − 1, we define

bi,ℓ = {0 for ℓ = 0
aim+ℓ − aim+ℓ−1 for ℓ = 1,2,⋯,m − 1.

Since ∣yj − yj−1∣ ≤ ε for all j, we have ∣aj − aj−1∣ ≤ 1. It follows that bi,ℓ ∈ {−1,0,1} for i =
0,1,⋯, n − 1 and ℓ = 0,1,⋯,m − 1. Hence, there exist ci,ℓ ∈ {0,1} and di,ℓ ∈ {0,1} such that

bi,ℓ = ci,ℓ − di,ℓ for i = 0,1,⋯, n − 1 and ℓ = 0,1,⋯,m − 1.

30

Since any j ∈ {0,1,⋯, nm − 1} can be uniquely indexed as j = im + k with i ∈ {0,1,⋯, n − 1} and
k ∈ {0,1,⋯,m − 1}, we have

aj = aim+k = aim + k∑
ℓ=1
(aim+ℓ − aim+ℓ−1) = aim + k∑

ℓ=1
bi,ℓ = aim + k∑

ℓ=0
bi,ℓ

= aim + k∑
ℓ=0

ci,ℓ − k∑
ℓ=0

di,ℓ.

There exists a continuous piecewise linear function ϕ1 with 2n breakpoints such that

ϕ1(x) = aim for any x ∈ [im, im +m − 1] and i = 0,1,⋯, n − 1.

Then, we have
ϕ1(j) = aim for j = 0,1,⋯, nm − 1,

where (i, k) is the unique index pair satisfying j = im + k with i ∈ {0,1,⋯, n − 1} and k ∈{0,1,⋯,m − 1}. By Lemma D.1, ϕ1 can be realized by a one-hidden-layer ReLU network of width
2n + 1.

By Lemma D.3, there exist ϕ2, ϕ3 ∈ NNs{58(s + 7)2(n + 1)} such that

ϕ2(j) = k∑
ℓ=0

ci,ℓ and ϕ3(j) = k∑
ℓ=0

di,ℓ for j = 0,1,⋯, nm − 1,

where (i, k) is the unique index pair satisfying j = im + k with i ∈ {0,1,⋯, n − 1} and k ∈{0,1,⋯,m − 1}.
Hence, by indexing j ∈ {0,1,⋯, nm−1} as j = im+k for i = {0,1,⋯, n−1} and k ∈ {0,1,⋯,m−1},
we have

aj = aim + k∑
ℓ=0

ci,ℓ − k∑
ℓ=0

di,ℓ = ϕ1(j) + ϕ2(j) − ϕ3(j).
By defining

ϕ̃(x) ∶= (ϕ1(x) + ϕ2(x) + ϕ3(x))ε for any x ∈ R,

we have ϕ̃(j) = ajε for j = 0,1,⋯, nm−1 and ϕ̃ can be realized by the height-s NestNet in Figure 19.

j

ϕ2(j)

j

ϕ1(j) + ϕ2(j)

j

(
ϕ1(j) + ϕ2(j) + ϕ3(j)

)
ε = ajε =: ϕ̃(j)

ϕ2 ϕ1 εϕ3

Block 1 Block 2 Block 3

Figure 19: An illustration of the NestNet realizing ϕ̃ for j = 0,1,⋯, J − 1.

In Figure 19, Block 1 or 3 has at most

3(58(s + 7)2(n + 1)) = 174(s + 7)2(n + 1)
parameters; Block 2 is of width (2n + 1) + 2 = 2n + 3 and depth 1, and hence has at most

(2 + 1)(2n + 3) + ((2n + 3) + 1)2 = 10n + 17
parameters. Then, ϕ̃ can be realized by a height-s ReLU NestNet with at most

2(174(s + 7)2(n + 1)) + 10n + 17 = 349(s + 7)2(n + 1)
parameters. Note that ϕ̃ may not be bounded. Thus, we define

ψ(x) ∶=min{σ(x), M} for any x ∈ R,

31

where
M =max{yj ∶ j = 0,1,⋯, nm − 1}.

Then, the desired function ϕ can be define via ϕ ∶= ψ ○ ϕ̃. Clearly,

0 ≤ ϕ(x) ≤M =max{yj ∶ j = 0,1,⋯, J − 1} for any x ∈ R.

If follows from 0 ≤ ajε = ⌊yj/ε⌋ε ≤ yj ≤M for j = 0,1,⋯, J − 1 that

ϕ(j) = ψ ○ ϕ̃(j) = ψ(ajε) =min{σ(ajε), M} = ajε,
implying

∣ϕ(j) − yj ∣ = ∣ajε − yj ∣ = ∣⌊yj/ε⌋ε − yj ∣ = ∣⌊yj/ε⌋ − yj/ε∣ε ≤ ε.
It remains to show that ϕ can be realized by a height-s ReLU NestNet with the desired size. Clearly,
ψ can be realized by the network in Figure 20, which is of width 4 and depth 2.

x σ(x)

σ
(
σ(x) +M

)

σ
(
− σ(x)−M

)

σ
(
σ(x)−M

)

σ
(
− σ(x) +M

)

min
{
σ(x), M

}
=: ψ(x)

Figure 20: An illustration of the network realizing ψ based on the fact min{a, b} = 1
2
(σ(a + b) −

σ(−a − b) − σ(a − b) − σ(−a + b)).
Therefore, ϕ can be realized by a height-s ReLU NestNet with at most

349(s + 7)2(n + 1) + (4 + 1)4(2 + 1) ≤ 350(s + 7)2(n + 1)
parameters. Hence, we finish the proof of Proposition B.2.

D.3 Proof of Lemma D.2 for Proposition B.2

We will use the mathematical induction to prove Lemma D.2. To this end, we introduce two lemmas
for the base case and the induction step.

Lemma D.4. Given any n ∈ N+, there exists a function ϕ realized by a ReLU network with 128n+294
parameters such that: For any θ1, θ2,⋯, θn ∈ {0,1}, we have

ϕ(k + bin0.θ1θ2⋯θn) = k∑
ℓ=1

θℓ for k = 0,1,⋯, n. (15)

Lemma D.5. Given any n, r, n̂ ∈ N+, if g ∈ NNr{n̂} satisfying

g(p + bin0.ξ1ξ2⋯ξnr) = p∑
j=1

ξj for any ξ1, ξ2,⋯, ξnr ∈ {0,1} and p = 0,1,⋯, nr, (16)

then there exists ϕ ∈ NNr+1{n̂ + 114(r + 7)(n + 1)} such that: For any θ1, θ2,⋯, θnr+1 ∈ {0,1}, we
have

ϕ(k + bin0.θ1θ2⋯θnr+1) = k∑
ℓ=1

θℓ for k = 0,1,⋯, nr+1.

The proofs of Lemmas D.4 and D.5 can be found in Sections D.3.1 and D.3.2, respectively. We
remark that the function ϕ in Lemma D.5 is independent of θ1, θ2,⋯, θnm. The proof of Lemma D.2
mainly relies on Lemma D.4 and repeated applications of Lemma D.5. The details can be found
below.

32

Proof of Lemma D.2. We will use the mathematical induction to prove Lemma D.2. First, let us
consider the base case s = 1. By Lemma D.4, there exists a function realized by a ReLU network
with 128n + 294 parameters such that: For any θ1, θ2,⋯, θn ∈ {0,1}, we have

ϕ(k + bin0.θ1θ2⋯θn) = k∑
ℓ=1

θℓ for k = 0,1,⋯, n.

That means Equation (14) holds for s = 1. Moreover, ϕ can also be regarded as a height-1 ReLU
NestNet with 128n + 294 ≤ 57(s + 7)2(n + 1) parameters for s = 1, which means Lemma D.2 is
proved for the case s = 1.

Next, assume Lemma D.2 holds for s = r ∈ N+. We need to show that it is also true for s = r + 1 by
applying Lemma D.5. By the induction hypothesis, there exists

g ∈ NNr{57(r + 7)2(n + 1)}
such that: For any ξ1, ξ2,⋯, ξnr ∈ {0,1}, we have

g(k + bin0.ξ1ξ2⋯ξnr) = k∑
ℓ=1

θℓ for k = 0,1,⋯, nr.

It follows from m = nr that

g(p + bin0.ξ1ξ2⋯ξm) = p∑
j=1

ξj for any ξ1, ξ2,⋯, ξm ∈ {0,1} and p = 0,1,⋯,m,

which means g satisfies Equation (16). Then, by Lemma D.5 with m = nr and n̂ = 57(r + 7)2(n+ 1)
therein, there exists

ϕ ∈ NNr+1{n̂ + 114(r + 7)(n + 1)}
such that: For any θ1, θ2,⋯, θnm ∈ {0,1}, we have

ϕ(k + bin0.θ1θ2⋯θnm) = k∑
ℓ=1

θℓ for k = 0,1,⋯, nm.

It follows from m = nr that, for any θ1, θ2,⋯, θnr+1 ∈ {0,1}, we have

ϕ(k + bin0.θ1θ2⋯θnr+1) = k∑
ℓ=1

θℓ for k = 0,1,⋯, nr+1,

which means Equation (14) holds for s = r + 1. Moreover, we have

n̂ + 114(r + 7)(n + 1) = 57(r + 7)2(n + 1) + 114(r + 7)(n + 1)
= 57(n + 1)((r + 7)2 + 2(r + 7))
≤ 57(n + 1)((r + 7) + 1)2 = 57((r + 1) + 7)2(n + 1).

This implies that

ϕ ∈ NNr+1{n̂ + 114(r + 7)(n + 1)} ⊆ NNr+1{57((r + 1) + 7)2(n + 1)}.
Thus, we prove Lemma D.2 for the case s = r + 1, which means we finish the induction step. Hence,
by the principle of induction, we complete the proof of Lemma D.2.

D.3.1 Proof of Lemma D.4 for Lemma D.2

To simplify the proof of Lemma D.4, we introduce the following lemma.
Lemma D.6. Given any n ∈ N+, there exists a function ϕ realized by a ReLU network of width 7 and
depth 2n + 1 such that: For any θ1, θ2,⋯, θn ∈ {0,1}, we have

ϕ(bin0.θ1θ2⋯θn, k) = k∑
ℓ=1

θℓ for k = 0,1,⋯, n.

33

Lemma D.6 is the Lemma 3.5 of [35]. The detailed proof can be found therein. With Lemma D.6 in
hand, we are ready to prove Lemma D.4.

Proof of Lemma D.4. By Lemma D.6, there exists a function ϕ0 realized by a ReLU network of
width 7 and depth 2n + 1 such that: For any θ1, θ2,⋯, θn ∈ {0,1}, we have

ϕ0(bin0.θ1θ2⋯θn, k) = k∑
ℓ=1

θℓ for k = 1,2,⋯, n.

The equation above is not true for k = 0. We will construct ϕ2 such that

ϕ2(bin0.θ1θ2⋯θn, k) = k∑
ℓ=1

θℓ for k = 0,1,⋯, n.

To this end, we first set

M =max{∣ϕ0(x, y)∣ ∶ x ∈ [0,1], y ∈ [0, n]}
and define

ϕ1(x, y) ∶=min{M + ϕ0(x, y), 2My} for any x ∈ [0,1] and y ∈ [0, n].

x

y

M + ϕ0(x, y)

2My

σ

((
M + ϕ0(x, y)

)
+ 2My

)

σ

(
−

(
M + ϕ0(x, y)

)
− 2My

)

σ

((
M + ϕ0(x, y)

)
− 2My

)

σ

(
−

(
M + ϕ0(x, y)

)
+ 2My

)

min
{
M + ϕ0(x, y), 2My

}
=: ϕ1(x, y)

ϕ0

Figure 21: An illustration of the network realizing ϕ1 for any x ∈ [0,1] and y ∈ [0, n] based on the
fact min{a, b} = 1

2
(σ(a + b) − σ(−a − b) − σ(a − b) − σ(−a + b)).

As we can see from Figure 21, ϕ1 can be realized by a ReLU network of width max{7,4} = 7 and
depth (2n + 1) + 2 = 2n + 3. Moreover, we have

ϕ1(bin0.θ1θ2⋯θn, k) =min{M + ϕ0(bin0.θ1θ2⋯θn, k), 2Mk}
= {M +∑k

ℓ=1 θℓ for k = 1,2,⋯, n
0 for k = 0.

Define
ϕ2(x, y) ∶= σ(ϕ1(x, y) −M) for any x ∈ [0,1] and y ∈ [0,∞).

Then, ϕ2 can be realized by a ReLU network of width 7 and depth (2n + 3) + 1 = 2n + 4. Moreover,
we have

ϕ2(bin0.θ1θ2⋯θn, k) = σ(ϕ1(bin0.θ1θ2⋯θn, k) −M)
= {σ(∑k

ℓ=1 θℓ) = ∑k
ℓ=1 θℓ for k = 1,2,⋯, n

σ(−M) = 0 for k = 0.
That is,

ϕ2(bin0.θ1θ2⋯θn, k) = k∑
ℓ=1

θℓ for k = 0,1,⋯, n.

Next, we will construct Ψ to extract k and bin0.θ1θ2⋯θn from k + bin0.θ1θ2⋯θn. It is easy to
construct a continuous piecewise linear function ψ ∶ R→ R with 2n breakpoints satisfying

ψ(x) = ⌊x⌋ for any x ∈ n−1⋃
ℓ=0
[ℓ, ℓ + 1 − δ] with δ = 2−n.

34

By Lemma D.1 with p = 2n therein, ψ can be realized by a one-hidden-layer ReLU network of width
2n + 1. By defining

Ψ(x) ∶= [x − ψ(x)
ψ(x)] = [σ(x) − ψ(x)ψ(x)] for any x ∈ [0,∞).

Then, Ψ can be realized by a one-hidden-layer ReLU network of width 1 + 2(2n + 1) = 4n + 3. That
means, the network realizing Ψ has at most

(1 + 1)(4n + 3) + ((4n + 3) + 1)2 = 16n + 14
parameters. Moreover, for any θ1, θ2,⋯, θn ∈ {0,1} and k = 0,1,⋯, n, we have

ψ(k + bin0.θ1θ2⋯θn) = ⌊k + bin0.θ1θ2⋯θn⌋ = k,
implying

Ψ(k + bin0.θ1θ2⋯θn) = [k + bin0.θ1θ2⋯θn − ψ(k + bin0.θ1θ2⋯θn)
ψ(k + bin0.θ1θ2⋯θn)]

= [bin0.θ1θ2⋯θn
k

] .
Finally, the desired function ϕ can be defined via ϕ ∶= ϕ2 ○Ψ. Clearly, the network realizing ϕ2 is of
width 7 and depth 2n + 4, and hence has at most

(7 + 1)7((2n + 4) + 1) = 56(2n + 5)
parameters, implying ϕ can be realized by a ReLU network with at most

56(2n + 5) + (16n + 14) = 128n + 294
parameters. Moreover, for any θ1, θ2,⋯, θn ∈ {0,1} and k = 0,1,⋯, n, we have

ϕ(k + bin0.θ1θ2⋯θn) = ϕ2 ○Ψ(k + bin0.θ1θ2⋯θn)
= ϕ2(bin0.θ1θ2⋯θn, k) = k∑

ℓ=1
θℓ.

Thus, we finish the proof of Lemma D.4.

D.3.2 Proof of Lemma D.5 for Lemma D.2

The key idea of proving Lemma D.5 is to construct a network with n blocks, each of which extracts
the sum of nr bits via g. Then the whole network can extract the sum of nr+1 bits as we expect.

To simplify our notation, we set m = nr. Given any nm binary bits θℓ ∈ {0,1} for ℓ = 1,2,⋯, nm,
we divide these nm bits into n classes according to their indices, where the i-th class is composed
of m bits θim+1,⋯, θim+m for i = 0,1,⋯, n − 1. We will show how to extract the m bits of the i-th
class, stored in bin0.θim+1⋯θim+m.

First, let us show how to construct a network to extract k and bin0.θ1θ2⋯θnm from k + 0.θ1θ2⋯θnm.
By setting ñ = 2n and Proposition B.1 with J = 2ñr

therein, there exists

g̃ ∈ NNr{36(r + 7)ñ} = NNr{36(r + 7)(2n)} = NNr{72(r + 7)n}
such that

g̃(x) = ⌊x⌋ for any x ∈ J−1⋃
ℓ=0
[ℓ, ℓ + 1 − δ].

Observe that

J − 1 = 2ñr = 2(2n)r − 1 ≥ 22(nr) − 1 = 22m − 1 = 4m − 1 ≥m2 ≥ nm.
If follows from bin0.θ1θ2⋯θnm ≤ 1 − 2−nm = 1 − δ that

k + bin0.θ1θ2⋯θnm ∈ nm⋃
ℓ=0
[ℓ, ℓ + 1 − δ] ⊆ J−1⋃

ℓ=0
[ℓ, ℓ + 1 − δ]

35

for k = 0,1,⋯, nm. Thus, we have

g̃(k + bin0.θ1θ2⋯θnm) = k for k = 0,1,⋯, nm. (17)

It is easy to verify that

2m ⋅ bin0.θim+1⋯θnm ∈ 2m−1⋃
ℓ=0
[ℓ, ℓ + 1 − δ] for i = 0,1,⋯, n − 1.

Since 2m − 1 = 2nr − 1 ≤ 2(2n)r − 1 = J − 1, we have

g̃(2m ⋅ bin0.θim+1⋯θnm) = ⌊2m ⋅ bin0.θim+1⋯θnm⌋ for i = 0,1,⋯, n − 1.
Therefore, for i = 0,1,⋯, n − 1, we have

bin0.θim+1⋯θim+m = ⌊2m ⋅ bin0.θim+1⋯θnm⌋
2m

= g̃(2m ⋅ bin0.θim+1⋯θnm)
2m

and

bin0.θ(i+1)m+1⋯θnm = 2m(bin0.θim+1⋯θnm − bin0.θim+1⋯θim+m)
= 2m(bin0.θim+1⋯θnm − g̃(2m ⋅ bin0.θim+1⋯θnm)

2m
).

By defining

ϕ1(x) ∶= g̃(2mx)
2m

and ϕ2(x) ∶= 2m(x − g̃(2mx)
2m

) = (σ(x) − g̃(2mx)
2m

) for x ≥ 0,

we have
bin0.θim+1⋯θim+m = ϕ1(bin0.θim+1⋯θnm) (18)

and

bin0.θ(i+1)m+1⋯θnm = ϕ2(bin0.θim+1⋯θnm) (19)

for any i ∈ {0,1,⋯, n − 1}. Moreover, ϕ1 can be realized by a one-hidden-layer g̃-activated network
of width 1; ϕ2 can be realized by a one-hidden-layer (σ, g̃)-activated network of width 2.

Define
ϕ3,i(x) ∶=min{σ(x − im), m} for any x ∈ R and i = 0,1,⋯, n − 1.

For any k ∈ {1,2,⋯, nm}, there exist k1 ∈ {0,1,⋯, n − 1} and k2 ∈ {1,2,⋯,m} such that k =
k1m + k2. Then we have

ϕ3,i(k) =min{σ(k − im), m} =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
m if i ≤ k1 − 1
k2 if i = k1
0 if i ≥ k1 + 1. (20)

Observe that{1,2,⋯, k} = {1,2,⋯, k1m + k2}
= (k1−1⋃

i=1
{im + j ∶ j = 1,2,⋯,m})⋃{k1m + j ∶ j = 1,2,⋯, k2}.

It follows that
k∑

ℓ=1
θℓ = k1m+k2∑

ℓ=1
θℓ = k1−1∑

i=0
(m∑

j=1
θim+j) + k2∑

j=1
θk1m+j + 0

= k1−1∑
i=0
(m∑

j=1
θim+j) + k1∑

i=k1

(k2∑
j=1

θim+j) + n−1∑
i=k1+1

(0∑
j=1

θim+j)
= k1−1∑

i=0
(ϕ3,i(k)∑

j=1
θim+j) + k1∑

i=k1

(ϕ3,i(k)∑
j=1

θim+j) + n−1∑
i=k1+1

(ϕ3,i(k)∑
j=1

θim+j)
= n−1∑

i=0
(ϕ3,i(k)∑

j=1
θim+j)

(21)

36

for k ∈ {1,2,⋯, nm}, where the second to last equality comes from Equation (20). It is easy to verify
that Equation (21) also holds for k = 0, i.e.,

0∑
ℓ=1

θℓ = 0 = n−1∑
i=0
(0∑

j=1
θim+j) = n−1∑

i=0
(ϕ3,i(0)∑

j=1
θim+j).

Therefore, we have
k∑

ℓ=1
θℓ = n−1∑

i=0
(ϕ3,i(k)∑

j=1
θim+j) for any k ∈ {0,1,⋯, nm}. (22)

Fix i ∈ {0,1,⋯, n − 1}. By setting p = ϕ3,i(k) ∈ {0,1,⋯,m} and ξj = θim+j for j = 1,2,⋯,m in
Equation (16), we have

g(ϕ3,i(k) + bin0.θim+1θim+2⋯θim+m) = ϕ3,i(k)∑
j=1

θim+j . (23)

With Equations (17), (18), (19), (22), and (23) in hand, we are ready to construct the desired function
ϕ, which can be realized by the NestNet in Figure 22. Clearly, we have

ϕ(k + bin0.θ1⋯θnm) = k∑
ℓ=1

θℓ for k = 0,1,⋯, nm.

Note that nm = n ⋅ nr = nr+1. Then we have

ϕ(k + bin0.θ1⋯θnr+1) = k∑
ℓ=1

θℓ for k = 0,1,⋯, nr+1.

k + bin0.θ1 · · · θnm

k + bin0.θ1 · · · θnm

g̃(k + bin0.θ1 · · · θnm) = k

bin0.θ1 · · · θnm

k

bin0.θm+1 · · · θnm

ϕ3,0(k) + bin0.θ1 · · · θm

k

bin0.θ2m+1 · · · θmn

ϕ3,1(k) + bin0.θm+1 · · · θm+m

ϕ3,0(k)∑

j=1

θj

k

bin0.θ3m+1 · · · θmn

ϕ3,2(k) + bin0.θ2m+1 · · · θ2m+m

1∑

i=0

ϕ3,i(k)∑

j=1

θim+j

k

bin0.θ(n−1)m+1 · · · θnm

ϕ3,n−2(k) + bin0.θ(n−2)m+1 · · · θ(n−2)m+m

n−3∑

i=0

ϕ3,i(k)∑

j=1

θim+j

k

· · ·
ϕ3,n−1(k) + bin0.θ(n−1)m+1 · · · θ(n−1)m+m

n−2∑

i=0

ϕ3,i(k)∑

j=1

θim+j

n−1∑

i=0

ϕ3,i(k)∑

j=1

θim+j =
k∑

ℓ=1

θℓ =: ϕ(k + bin0.θ1 · · · θnm)

ϕ2 ϕ2 ϕ2
ϕ1 ϕ1 ϕ1

g g g g

ϕ3,0 ϕ3,1 ϕ3,2 ϕ3,n−1
g̃

Figure 22: An illustration of the NestNet realizing ϕ based on Equations (17), (18), (19), (22), and
(23). Here, g and g̃ are regarded as activation functions.

It remains to estimate the number of parameters in the NestNet realizing ϕ. Recall that ϕ1 can
be realized by a one-hidden-layer g̃-activated network of width 1 and ϕ2 can be realized by a
one-hidden-layer (σ, g̃)-activated network of width 2.

Observe that
min{a, b} = 1

2
(σ(a + b) − σ(−a − b) − σ(a − b) − σ(−a + b)) for any a, b ∈ R.

As we can see from Figure 23, ϕ3,i can be realized by a σ-activated network of width 4 and depth 2
for each i ∈ {0,1,⋯, n − 1}.

x σ(x− im)

σ
(
σ(x− im) +m

)

σ
(
− σ(x− im)−m

)

σ
(
σ(x− im)−m

)

σ
(
− σ(x− im) +m

)

min
{
σ(x− im), m

}
=: ϕ3,i(x)

Figure 23: An illustration of ϕ3,i for each i ∈ {0,1,⋯, n − 1}.
Thus, the network in Figure 22 can be regarded as a (σ, g, g̃)-activated network of width 2 + 1 + 1 +
1 + 4 + 1 = 10 and depth 2 + (2 + 1)n = 3n + 2. Recall that g ∈ NNr{n̂} and g̃ ∈ NNr{72(r + 7)n}.
This implies that ϕ can be realized by a height-(r + 1) NestNet with at most(10 + 1)10((3n + 2) + 1)´¹¹¸¹¹¶

outer network

+ n̂®
g

+ 72(r + 7)n´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
g̃

≤ n̂ + 114(r + 7)(n + 1)
parameters, which means we finish the proof of Lemma D.5.

37

	Introduction
	Main results and related work
	Main results
	Sketch of proving Theorem 2.1
	Related work

	Experimentation
	Archimedean spiral
	Fashion-MNIST

	Conclusion
	Proof of main theorem
	Notations
	Detailed proof of Theorem 2.1

	Proof of auxiliary theorem
	Key ideas of proving Theorem A.1
	Detailed proof of Theorem A.1

	Proof of Proposition B.1
	Lemmas for proving Proposition B.1
	Detailed proof of Proposition B.1

	Proof of Proposition B.2
	Lemmas for proving Proposition B.2
	Detailed proof of Proposition B.2
	Proof of Lemma D.2 for Proposition B.2
	Proof of Lemma D.4 for Lemma D.2
	Proof of Lemma D.5 for Lemma D.2

